Принцип действия дифференциального автомата: Дифференциальный автомат. Назначение и принцип работы дифференциального автомата

Содержание

Дифференциальный автомат. Назначение и принцип работы дифференциального автомата

Дифференциальный автоматический выключатель представляет собой уникальное устройство, в котором одновременно сочетаются функции автоматического выключателя и защитные свойства УЗО.

Дифференциальный автомат предназначен для защиты человека от поражений электрическим током при его соприкосновении с токоведущими частями электрооборудования либо при утечке электрического тока. В этом случае дифференциальный автомат выполняет функции устройства защитного отключения.

Также устройство осуществляет защиту электрической сети от коротких замыканий и перегрузок, выполняя функции автоматического выключателя.

Конструкция устройства

Конструктивно диф автоматы из состоят рабочей и защитной части.

Рабочая часть представляет собой автоматический выключатель, в котором имеется специальный механизм независимого расцепления и рейка сброса с помощью внешнего механического воздействия. В различных типах диф автоматов устанавливаются четырехполюсные или двухполюсные автоматические выключатели.

Дифференциальный автомат, как и обычный автоматический выключатель, оборудован двумя расцепителями:

  • — электромагнитный расцепитель отключает линию электропитания в случае короткого замыкания;
  • — тепловой расцепитель срабатывает в случае возникновения перегрузки защищаемой группы.

Защитной частью устройства является модуль дифференциальной защиты. Он обнаруживает дифференциальный электрический ток на землю (ток утечки). Кроме этого, модуль преобразовывает электрический ток в механическое воздействие, с помощью которого через специальную рейку осуществляется сброс выключателя.

Для обеспечения питания модуля защиты от электрического тока он включается последовательно с автоматическим выключателем.

В модуле защиты от электрического тока имеются некоторые дополнительные устройства, среди которых дифференциальный трансформатор, обнаруживающий остаточный электрический ток, а также электронный усилитель с катушкой электромагнитного сброса.


Для проверки исправности модуля дифференциальной защиты на корпусе устройства расположена специальная кнопка «Тест». При нажатии на эту кнопку создается искусственный ток утечки и автомат (если он исправен) должен отключиться.

Как работает диф автомат

В диф автомате, как и в устройстве защитного отключения, в качестве датчика утечки тока применяется специальный трансформатор. Работа этого трансформатора основана на изменении дифференциального тока в проводниках, подающих электрическую энергию на электроустановку, на которой обеспечивается защита.

Ток утечки отсутствует, если нет повреждений изоляции электропроводки или к токоведущим частям установки никто не прикасается. В этом случае в нулевом и фазном проводе нагрузки будут протекать равные токи.

Этими токами в магнитном сердечнике трансформатора тока наводятся встречно направленные равные магнитные потоки. В результате этого ток вторичной обмотки равен нулю и чувствительный элемент – магнитоэлектрическая защелка не срабатывает.

В случае возникновения утечки, к примеру, если человек случайно прикоснется к фазному проводнику или при нарушении изоляционных свойств диэлектрика, происходит нарушение баланса тока и магнитных потоков.

Во вторичной обмотке возникает электрический ток, который приводит в действие магнитоэлектрическую защелку. Сработавшая защелка воздействует на механизм, расцепляющий автомат и контактную систему.

Где применяются диф автоматы

Дифференциальный автомат может с успехом применяться в однофазных и трехфазных сетях переменного тока. Эти устройства способствуют значительному повышению уровня безопасности в процессе постоянной эксплуатации различных электроприборов.

Кроме этого, дифференциальные автоматические выключатели способствуют предотвращению пожаров, вызванных возгоранием изоляции токоведущих частей некоторых электрических приборов.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Принцип работы дифференциального автомата, его устройство и составные детали

Дифференциальный автомат является совокупностью двух приборов совмещенных в одном корпусе. Первый – это автоматический выключатель, защищающий от токов короткого замыкания и перегрузок. Второй – устройство защитного отключения (УЗО), предохраняющее от поражения человека электротоком и от пожара из-за повреждения изоляции проводников. Принцип работы дифавтомата основывается на тех же методах и способах защиты, которые используются в автоматических выключателях и УЗО.

Составные части дифавтомата

Дифференциальные автоматы производятся двух или четырехполюсными. Двухполюсные устройства работают в однофазной электросети, четырехполюсные – в трехфазных сетях.

Стандартизация и унификация привела к тому, что практически все дифференциальные автоматы выпускаются в виде модулей определенных размеров с креплением, рассчитанным для монтажа на DIN-рейку.

Двухполюсный автоматический выключатель дифференциального тока представляет собой прибор состоящий из:

  • устройства включения и отключения электрического тока;
  • контактной группы;
  • дугогасящей камеры;
  • токовых расцепителей.

Четырехполюсные дифавтоматы имеют такое же устройство, как и двухполюсные, только контролируют три фазы вместо одной. При срабатывании токовых расцепителей в любой фазе отключаются все три.

Группа включения-выключения

Устройство включения/отключения представляет собой систему рычагов и пружин, которая обеспечивает быстрое срабатывание (замыкание/размыкание контактов) независимо от скорости перевода рычага автомата в ручном режиме в положение включено/выключено.

При срабатывании расцепителей оно также быстро размыкает контакты. Это необходимо для того, чтобы избежать образования дуги и преждевременного выгорания контактов. Конструкция устройства такова, что при любом состоянии дифференциального автомата, переключение происходит за счет энергии заранее взведенной пружины.

Контакты и дугогасящая камера

Контактная группа представляет собой систему подвижных и неподвижных контактов, которые соединены с выходными клеммами дифференциального автомата.

Для увеличения износостойкости и уменьшения переходного сопротивления контактов, некоторые производители покрывают их металлокерамикой. В качестве металла используется серебро, как имеющее наименьшее удельное сопротивление. Для более надежного контакта, они подпружиниваются.

Дугогасящая Камера изготавливается из фибры. Внутри находятся металлические пластины, которые рассекают дугу, распределяют в пространстве, уменьшая тем самым ее мощность.

Фибра при нагревании мгновенно выделяет газы, которые вызывают гашение дуги. Во избежания разрыва корпуса от избыточного давления, возникающего при гашении электрической дуги, в нем предусмотрены отверстия. Корпус изготавливается из негорючего пластика.

Токовые расцепители

В дифференциальном автомате имеется три токовых расцепителя, действующих от превышения каких-либо значений тока, и механический, который осуществляет включение/отключение автомата за счет давления на внешний рычаг. Действие дифавтомата как раз и основывается на работе этих расцепителей.

Электромагнитный

Электромагнитный расцепитель по сути является соленоидом. Принцип действия заключается в следующем. Когда проходящий через катушку ток превышает определенное пороговое значение, магнитный сердечник втягивается, давит на рычаг, тот освобождает пружину, которая мгновенно разъединяет контакты.

Это пороговое значение называется током отсечки. Такой тип защиты мгновенного действия используется для предохранения от короткого замыкания.

По превышению отсечки в сравнении с номинальным током, дифференциальные автоматы делятся на несколько классов. Наиболее распространенные: В (3-5 кратное превышение от номинала), С (в 5-10 раз), D (в 10-20 раз больше номинала).

Тепловой

Тепловой расцепитель представляет собой биметаллическую пластину, обвитую изолированным проводом. При длительном превышении номинального тока провода греются, нагревают пластину.

При достижении определенной температуры пластина изгибается и давит на рычаг, который освобождает предохранительную планку. Та в свою очередь позволяет пружине разомкнуть контакты. Здесь проявляется тепловое действие тока.

Расцепитель настроен таким образом, что начинает срабатывать при превышении номинала в 1,2 раза. При таком превышении он может сработать, примерно, через час.

Если превышение больше, то срабатывание происходит значительно быстрее. Такая защита не позволяет отключаться автомату при запуске электродвигателя, когда кратковременные пусковые токи в несколько раз превышают номинальный. Ее еще называют защитой от перегрузок.

Дифференциальный

Расцепитель дифференциального типа срабатывает при различии тока, проходящего через нулевой и фазовый проводники свыше определенного значения, называемого током уставки или отключения.

Он состоит из измерительной части (трансформатора тока) и исполнительной (поляризационного реле).

Первичной обмоткой является фазовый и нулевой проводники, проходящие сквозь кольцо магнитопровода. Для увеличения индукции первичную обмотку делают многовитковую.

Выводы вторичной обмотки подсоединяются к управляющим контактам поляризованного реле. При наведении в ней электродвижущей силы, реле размыкает контакты дифференциального автомата.

При отсутствии токов утечки суммарное поле будет равно нулю, и во вторичной обмотке ток не наведется. Если нарушается изоляция проводников или человек случайно касается оголенного провода находящегося под напряжением, возникает разность токов в фазном и нулевом проводниках.

Это приводит к наведению ЭДС во вторичной обмотке, которая посредством поляризованного реле размыкает контакты дифференциального автомата.

Для защиты человека от электротока применяется уставка 10 мА или 30 мА. Для предотвращения пожара от повреждения изоляции уставка обычно составляет 100 мА или 300 мА.

В дифавтомате все расцепители действуют на один и тот же рычаг сложной формы, только точки приложения разные. Рычаг освобождает планку, удерживающую размыкающую пружину.

Проверка работы

Чтобы проверить, как работает система защиты от токов утечки, в дифференциальных автоматах устанавливают резистор и последовательно с ним кнопку «тест». Эта цепочка включается в обход трансформатора тока. Один конец подсоединяется к нулевому проводнику перед навивкой на ферромагнитное кольцо.

Второй подключается к фазе на выходе из магнитопровода трансформатора. При нажатии кнопки ток начинает течь через сопротивление, минуя трансформатор.

Таким способом моделируется утечка в линии. Если прибор исправен, то он должен отключиться.

Для правильного функционирования дифференциальные автоматы необходимо применять в линиях с глухо заземленной нейтралью. Корпуса оборудования и устройств, находящихся под защитой дифференциального автомата должны быть надежно заземлены.

Назначение и принцип работы дифференциального автомата |

Главная » Статьи » Назначение и принцип работы дифференциального автомата

Дифференциальный автомат – устройство, перенявшее от себя весь функционал УЗО и получившее дополнительно автовыключатель. Если сказать несколько проще, то автомат выступает в качестве отключателя, когда возникает опасность в поражении электрическим током. Устройство также предназначено для защиты сетей от перегрузок и замыканий благодаря функции автоматического выключения.

Заметим, что УЗО (устройство защитного отключения) отличается от дифавтомата. Внешне два эти устройства очень схожи между собой, но функции, которые они выполняют – различны. Так, УЗО срабатывает, когда в сети, к которой подключено устройство будет возникать ток утечки, в первую очередь опасный для человека; утечка также способна привести к пожароопасным ситуациям. Дифавтомат же способен защитить не только человека от удара током, но и сеть от замыканий, перегрузок; препятствует возникновению утечек и т.п.

Конструкция

По своей конструкции автоматы, как и большинство подобного оборудования, состоят из рабочей и защитной части. Рабочая область содержит в себе рейку сброса и устройство расцепления. В зависимости от вида автомата, могут быть установлены двух- или четырехполосные расцепители. В большинстве случаев автомат оборудуется, имеет два расцепителя:

  • тепловой – работает при появлении перегрузок;
  • электромагнитный – отключает линию при появлении коротких замыканий.

В качестве защитной области выступает модуль защиты, который способен обнаруживать ток утечки. Модуль также способен конвертировать ток в механическое воздействие, благодаря которому выполняется сброс выключателя. Дополнительно в модуле реализованы устройства, один из которых – трансформатор, способный обнаруживать ток, а также усилитель с катушкой сброса.

Большинство автоматов имеют на своем корпусе специальную кнопку, при помощи которой будет выработан искусственный ток. Собственно, если автомат исправен, то он должен сработать. Эту кнопка в первую очередь предназначена для проверки устройства, до того, как оно было подключено к сети.

Принцип работы

Дифавтомат, как и устройство отключения, использует в качестве датчика трансформатор. Суть действия этого автомата заключается в изменении тока в проводниках, которые дают энергию на установку, для которой предоставляется защита. Назначение и принцип работы

Ток утечки будет отсутствовать в том случае, когда не будет возникать повреждений изоляции проводки или к частям установки не будет ничто прикасаться. При таком раскладе, в фазном и нулевом проводе будут протекать равные по напряжению токи.

Таким образом, если человек нечаянно дотронется до фазного проводника или будут нарушены изоляционные свойства диэлектрика, то произойдет нарушение магнитных потоков и баланса тока. В результате во второй обмотке появится ток, при помощи которого будет приведена в действие магнитноэлектрическая защелка; она в свою очередь приведет в действие механизм, который расщепит систему и контактную систему.

Подбивая итоги, отметим, что автоматы успешно используются в одно- и трехфазных сетях переменного тока. Данные устройства выводят уровень безопасности на совершенно новый уровень при использовании различных электроприборов; практика показывает, что автоматы превосходно предотвращают пожароопасные ситуации и защищают человека от ударов током.

 
 
 
 

Принцип работы дифференциального автоматического выключателя

Алгоритм действия дифференциальных выключателей строится на обеспечении надёжной защиты от возможных токов утечки. Например, в случаях косвенного касания с токопроводящими элементами или в моменты замыкания токоведущих частей на корпус. К выбору защитного устройства следует отнестись ответственно. Согласны?

Мы расскажем, как грамотно подобрать дифференциальный автоматический выключатель, наделенный расширенным защитным функционалом. В представленной нами статье детально описаны разновидности устройства, способного предотвратить массу угрожающих ситуаций. Даны ценные рекомендации будущим покупателям.

Содержание статьи:

Работа устройства дифференциального тока

Рассматривая стандартную конструкцию УЗО (УДТ), следует особо выделить три главных модуля:

  1. Трансформатор тока суммирующий.
  2. Расцепитель-преобразователь.
  3. Устройство блокировки коммутирующих элементов.

Токоведущие проводники текущей схемы подключаются на контакты суммирующего трансформатора. Учитывая закон Ома, согласно которому сумма всех токов даёт нуль, магнитное действие токоведущих проводников трансформатора взаимно компенсируется.

Магнитного поля, вызывающего за счёт эффекта индукции появление напряжения вторичной обмотки трансформатора, не образуется. Такое состояние соответствует нормальным условиям прохождения тока в схеме.

Прибор УДТ: 1 – контакты входной цепи; 2 – контакты выходной цепи; 3 – кнопка взвода; 4 – замыкающие контакты; 5 – трансформатор суммирующий; 6 – вторичная обмотка; 7 – устройство слежения; 8 – кнопка «тест»; 9 – тестовый проводник

Однако формирование даже небольшого тока утечки этот баланс нарушает. Область сердечника трансформатора оказывается под действием остаточного магнитного поля. Как результат – вторичная обмотка выдаёт напряжение.

Естественным образом срабатывает расцепитель, преобразующий электрическую величину в механическое действие. Далее срабатывает блокирующее устройство дифференциального тока.

Подобная техника защиты характеризуется как высокоуровневая, потому что разрыв цепи осуществляется независимо от напряжения сети или напряжения вспомогательного источника энергии. Именно такой принцип действия на 100% гарантирует срабатывание защиты в любых обстоятельствах.

Конструкция каждого выключателя дифференциального тока, как правило, оснащается тестовой клавишей. Так называемая «контрольная кнопка» специально выведена на фронтальную панель устройства, чтобы пользователи могли проверять эксплуатационную готовность защитного устройства.

Тестовая кнопка используется с целью проверки работоспособности устройства. Обычное применение кнопки – после первой установки прибора и запуска в работу, а также в рамках технического обслуживания

Если клавишу «Тест» нажать, механизм устройства искусственно формирует ток утечки. В этом случае исправный прибор обязательно срабатывает. Обычно кнопкой «Тест» пользуются сразу после установки автомата в схему, при первом подключении электричества. В последующем тестируют по графику, примерно один раз в квартал.

Виды приборов защитного отключения

Разнообразие автоматических дифференциальных выключателей впечатляет. Благодаря такому разнообразию открываются возможности организации эффективной защиты в проектах любого назначения. Рассмотрим несколько примеров конструктивного исполнения УЗО, чтобы оценить все существующие преимущества.

Устройства стандартного исполнения

Основное назначение стандартных приборов, к примеру, серии F, FH – защита обслуживающего персонала. Прямой/непрямой контакт с элементами оборудования, находящимися под напряжением, риск поражения электротоком – подобные ситуации сводятся к нулю, когда применяются выключатели серии F, FH.

Прибор из серии устройств защитного отключения известной компании ABB, выпускаемый серией F и FH. Изделие из категории экономичных, но вполне эффективных продуктов

Оптимальный выбор для применения в схемах бытовой и коммерческой сферы. Приборы также обеспечивают , если существуют риски возгорания кабелей в условиях долговременного воздействия тока утечки.

Этот вид устройств рассчитан для внедрения в сетях переменного тока при минимальных уровнях высоких гармоник и отсутствии постоянного напряжения. Ток нагрузки 16 – 63А, запас механической цикличности – 20000.

Ещё один пример стандартных селективных устройств – серия DS фирмы ABB. Они разработаны для установки и эксплуатации в схемах однофазных сетей. С ознакомит статья, прочитать которую мы очень советуем.

Назначение автоматических выключателей дифференциального тока серии DS – под организацию защитных схем против перегрузок и КЗ. Модули обеспечивают чёткую работу защитных функций на случайное прикосновение к токоведущим линиям или элементам оборудования.

Устройство селективного действия – продукт производства фирмы ABB. Изделия, подобные серийным модулям DS, показали долговременную безупречную работу на практике и поэтому пользуются спросом

Отличительная черта серийной разработки DS – наличие визуально определяемой индикации, сигнализирующей наличие тока утечки. Это одна из тех конструкций защитного устройства, благодаря которой имеется возможность предупреждать возгорание, сигнализировать о нарушении электрической изоляции. Допустимая нагрузка 6 – 40А. Цикличность – 20000.

«Домашний» дифференциальный выключатель серии АД, БД – продукт немецкой компании «Schneider Electric», был разработан, в первую очередь, для внедрения в состав бытовых электросетей.

Главное предназначение – исключение поражения физического тела электрическим током. Также этот вид защитных устройств вполне эффективно и оперативно защищает электрооборудование, кабели, технику.

Серия приборов специально разработанных для применения в сетях домашнего (квартирного) назначения. Проектировался этот вид дифференциальных выключателей немецким производителем «Schneider Electric»

Чувствительность автомата на предмет прямых (косвенных) контактов с частями электрооборудования под напряжением соответствует нормативу (30 мА). Стандартная чувствительность (100 – 300 мА) обеспечена и на случай определения токовой утечки в результате возгораний. Удачное решение для и служебных помещений.

Дифференциальные автоматы-моноблоки

Комплексно функционируют устройства-моноблоки, и в этом их главное отличие от стандартных разработок. Охватывают весь спектр защитных функций, которыми должны обладать современные приборы защиты. Правда устройства стандартного исполнения также обеспечивают пользователей широкой функциональностью.

Ярким примером автоматических выключателей дифференциального тока, действующих в комплексной функциональности, являются продукты всё той же компании «Schneider Electric». В частности, модели серии «Multi» – выключатели нагрузки селективного и мгновенного действий.

Ещё один вариант эффективных и надёжных устройств, разработанных в рамках проектов под названием «Multi». Приборы обладают широким спектром свойств, обеспечивающих защитные функции

Автоматы, в зависимости от модели, предназначены для установки в составе распределительных сетей административных (хозяйственных) зданий промышленных производств.

Эти УДТ обеспечивают разрыв цепей при токах утечки от 10 до 500 мА. Конструктивная особенность – возможность регулировки на исключение случайных срабатываний (грозовые разряды, пробой через слой пыли и т.п.).

Защитники от импульсных перенапряжений

Пожалуй, отдельным видом приборов следует считать и конструкторские разработки, подобные автоматическим выключателям, исполнение которых предусматривает защиту против импульсных перенапряжений.

Как правило, этот вид устройств наделяется сверхвысоким быстродействием, уровнем чувствительности 10 – 30 мА на случай срабатывания по факту прикосновения к токоведущим поверхностям. Эти же автоматы гарантируют надежную защиту оборудования от сверхтоков.

Устройства, разработанные под использование в цепях, где существует риск возникновения перенапряжений импульсного характера. Отличаются несколько продвинутой функциональностью

Диапазон номинальных токов обычно составляет здесь 6 – 63А при напряжениях 230 – 440 вольт. Коммутационная способность достигает значения 4500А. Конструктивно выпускаются под запитывание через 2 или 4 полюса.

Из той же серии, но несколько модифицированными видятся выключатели с характеристикой «А». Наглядный пример – серия АД12М, где отмечено расширение защитной функциональности. Среди дополнений – функция отключения на случай повышения сетевого напряжения свыше 265 вольт в течение 0,3 секунды.

Следует также отметить, что приборы, наделённые характеристикой «А», имеют существенные отличия от исполнения дифференциальных автоматов с характеристикой «АС». Первый вариант способен реагировать на постоянно-пульсирующий дифференциальный ток и на ток синусоидальной формы.

Мобильные устройства защитного отключения

Промышленность (зарубежная и отечественная) выпускает ещё одну разновидность автоматических дифференциальных выключателей в конструктивном исполнении мобильного типа. То есть речь идёт о переносных устройствах, управляемых дифференциальным током.

Такое исполнение характерно для современных моделей переносного типа. Мобильные защитные устройства дифференциального тока рекомендованы для применения в жилом секторе

Такие мобильные модули выполнены в виде миниатюрного блока, который попросту вставляется в розетку бытового назначения. Между тем, этот вид устройств предназначается под использование внутри помещений, входящих в группу особо опасных (с повышенной опасностью).

Эти приборы нередко устанавливаются как дополнительные модули к уже существующим .

Этот же вид устройств – переносной конфигурации, рекомендуется применять в бытовых условиях для защиты детей и пожилых людей. Как известно, сопротивление тела молодого и старого организмов несколько отличается от той же величины организма человека среднего возраста.

Поэтому переносные УЗО выполнены конструктивно как приборы, имеющие повышенный уровень уставки срабатывания. Это значение настройки обычно не превышает 10 мА для устройств мобильного типа.

Переносные автоматы, к примеру, серии УЗО-ДП, рассматриваются оптимальной защитой для частной городской и загородной недвижимости – коттеджей, дачных построек, гаражей и т. п.

Маркировка УЗО (УДТ) на корпусе приборов

Нужно заметить, что корпусная характеристика (обозначения на корпусе) современных устройств показывает практически полную информацию относительно электромеханических и температурных параметров приборов.

Вся информация о рабочих характеристиках, сфере применения и даже об оптимальном варианте подключения нанесена на корпус защитного устройства в виде четкой, легко читаемой маркировки

По сути, пользователю даже нет необходимости обращаться к сопроводительной документации, так как, зная обозначения, все сведения можно получить прочтением информации с фронтальной части корпуса.

Среди обозначений рекомендуется изучить графику, показывающую характеристику автоматов относительно условий функционирования: «А», «В», «АС», «F», которая определяет чувствительность прибора к переменному и постоянному току разной формы.

Аббревиатурное же обозначение приборов часто отражает их типичную и серийную принадлежность. Например, «АД12М» – автомат дифференциальный, серийный номер – 12, модернизированный. Или так:  «ВД63» – выключатель дифференциальный, 63 серии.

Правда встречаются модели (как правило, импортные), имеющие несколько запутанную аббревиатуру, скажем – Fh300. Здесь: символ F – это серия устройства, H – вариант исполнения корпуса, 200  – серийный номер.

Или ещё пример: прибор, обозначенный аббревиатурой DS. Первый символ понятен без «перевода» – дифференциальный. Второй указывает на принадлежность устройства к разряду селективных устройств.

Вопрос выбора между требует детально изучения. Рекомендуем ознакомиться с материалом, разбирающим их отличия, специфику использования, а также преимущества с недостатками.

Как выбрать устройство дифференциального тока?

Выбирают устройства дифференциального тока аналогично тому, как делают это, к примеру, с автоматическими выключателями.

Выбор УДТ. При той обширной информации, что выводится на фронтальной панели модуля, выбирать приборы можно без затруднений непосредственно на месте приобретения

То есть выбор делается на основании традиционных критериев подбора электрооборудования подобного типа:

  1. Цель применения.
  2. Соответствие току нагрузки.
  3. Критерий чувствительности на срабатывание.
  4. Корпусное исполнение.

Для применения в условиях привычного быта обычно выбор приходится на однофазные приборы характеристики «АС» или «А». Для использования на бытовых сетях жилых строений лучше брать устройства чувствительностью 10-30 мА (на прикосновение) и 100 мА (пожарная защита и КЗ). Корпусное исполнение – максимально удобное под монтаж и в плане эксплуатации.

Следует отметить: устройство дифференциального тока монтируется всегда последовательно с автоматическим выключателем. Поэтому токовые характеристики обоих приборов должны совпадать либо номинальный ток УДТ должен быть выше.

Выводы и полезное видео по теме

Еще больше интересной информации об устройстве, видах и принципе работы диффавтоматов можно узнать из следующего видеоролика:

Защитные устройства дифференциального тока фактически являются автоматическими выключателями, дополненными чувствительной системой определения токовой утечки.

Подобными приборами в обязательном порядке необходимо оснащать электросети, исполнение которых сопряжено с риском контакта людей и токоведущих частей оборудования. Схемы современного исполнения по умолчанию предполагают внедрение УДТ.

Хотите рассказать о том, как подбирали дифференциальный выключатель для защиты домашней или дачной сети? Располагаете полезной информацией по теме, которой стоит поделиться с посетителями сайта? Пишите, пожалуйста, комментарии в находящейся ниже блок-форме, размещайте фото и задавайте вопросы.

Принцип работы дифференциального автомата. Shop220

Дифференциальный автомат является уникальным устройством, выполняющим и функции автоматического выключателя, и устройства защитного отключения. Дифференциальный автомат призван предотвратить поражение человека электрическим током при его соприкосновении с токоведущими частями либо по вине утечки электрического тока. Кроме того, данное устройство выполняет защиту электрической сети от коротких замыканий и перегрузок, выполняя, таким образом, функцию автоматического выключателя.

Все дифференциальные автоматы, включая дифференциальные автоматы Legrand, имеют уникальную конструкцию, которой и определяется их эффективная работа. Составляют такую конструкцию, как правило, две части, обладающие электрической и механической взаимосвязью.

Первая часть такого устройства представлена автоматическим выключателем, в комплектацию которого входят специальный механизм независимого расцепления и рейка сброса посредством внешнего механического усилия. В соответствии с типом дифференциального автомата он может быть оснащен двухполюсным или четырехполюсным автоматическим выключателем.

Вторая часть устройства представлена защитным модулем, предупреждающим поражение электрическим током. Данный модуль преобразует электрический ток, обеспечивает его усиление и механическое взаимодействие со специальной рейкой сброса выключателя. Питание такого модуля осуществляется за счет последовательного включения автоматического выключателя и модуля. Модуль укомплектован несколькими дополнительными устройствами: дифференциальным трансформатором, способствующим обнаружению остаточного электрического тока, и электронным усилителем, оснащенным катушкой электромагнитного сброса.

У всех моделей дифавтоматов присутствует специальная кнопка «Тест», посредством которой проверяется, как такое устройство будет функционировать в эксплуатации.

Принцип работы дифференциального автомата заключается в следующем. Сразу после монтажа устройства и подключения его в электрическую сеть соединенный с вторичной обмоткой датчика электронный усилитель начнет получать питание. При протекании электрического тока по силовым проводам модуля в магнитопроводе датчика будут наблюдаться противоположно следующие равные магнитные потоки. При повреждении изоляции возникнет дифференциальный ток, который равенство потоков нарушит. Результатом станет проведение напряжения в обмотке, прикладывающегося ко входу электрического усилителя. При достижении таким напряжением определенного значения, электрический усилитель открывается, и ток подается на катушку электромагнита сброса. Именно этим электромагнитом сброса сдергивается специальная защелка механизма независимого расцепления, ввиду чего контакты принудительно размыкаются.

 

Принцип работы дифавтомата, как работает дифференциальный автомат

Difference (англ.)- разница. Именно от этого слова произошло название «дифференциальный автомат», в этом случае имеется в виду разница между величинами входных токов в сети. Устройство, которое срабатывает в случае возникновения аварийной ситуации из-за несовпадения силы тока «туда и оттуда» и одновременно отключает фазу и ноль, называется дифференциальным автоматом.


Автоматический выключатель дифференциальный IEK АВДТ 32

Главным его предназначением и основным принципом работы является единовременное отслеживание возможного короткого замыкания (КЗ) и последующее отключение питания. Кроме этого, контролируется наличие токов утечки, в случае отклонения от нормы, производится обесточивание линии. Можно выделить несколько основных функций, выполняемых этим устройством:

  1. Контроль значений токов, недопустимость КЗ и обесточивание линии при возникновении нештатной ситуации.
  2. Отслеживание превышения максимально допустимых значений напряжения и отключение при возможной перегрузке (исключает возможность перегрева проводов и повреждение изоляции).
  3. Проверка наличия токов утечки в связи с повреждением токоведущих или изоляционных составляющих.


Схема дифавтомата

Таким образом, дифференциальный автомат совмещает в себе два устройства и образует комплекс устройства защитного отключения (УЗО) и автомата защиты. Как и у всех универсальных устройств, у него есть свои сильные и слабые стороны.

Преимущества

  • при условии правильного подключения, одним из главных преимуществ дифавтомата является безопасное для человека подключение к электрической сети;
  • комплексное решение правильного совмещения УЗО и номинала по току;
  • контроль и защита электрической сети от перепадов напряжения;
  • компактное размещение;
  • несложное подключение.

Недостатки

  1. При отсутствии соответствующих флажков на определенных моделях дифавтоматов, отсутствует возможность определения причины срабатывания устройства, что делает устранение неисправности более сложным процессом.
  2. Невозможность менять поломавшиеся составляющие дифференциального автомата по отдельности. К примеру, если выйдет из строя только УЗО или автомат, все равно придется менять все устройство. Таким образом, в случае поломки придется заплатить полную стоимость дифавтомата.
  3. Ограниченность выбора. Не всегда нужная модель может оказаться в наличии, поэтому существует вероятность остаться без света на неопределенное время, необходимое для ее доставки.

Оптимальное применение дифавтомата

Для бытового размещения в простой сети с минимальным количеством подключенных электроприборов, рассчитанной на одного потребителя (например, на дачах) наиболее приемлемым вариантом будет установка дифавтомата вместо УЗО. Этим можно существенно улучшить защиту вашей сети от резких скачков напряжения.

Применение дифавтомата будет достаточно эффективным в случае, если сеть периодически подвержена воздействию влаги (баня, подвальные помещения, уличное освещение) и нуждается в мощном потреблении электроэнергии.

Если нет возможности поставить дифавтомат, можно заменить его связкой устройств УЗО+ двухполюсной автомат. По функционалу это практически то же самое, разница лишь в более сложном подключении.

Характеристики и выбор дифавтомата

Выбирая устройство, прежде всего надо определиться с выбором места его установки, и уже после этого подбирать дифференциальный автомат с техническими характеристиками, соответствующими вашим требованиям.

Кроме того, необходимо точно знать напряжение сети, в которой будет устанавливаться устройство. В зависимости от его величины (напряжения), существуют разные типы дифавтоматов. Различить их можно по надписям на корпусе устройства, рядом с отметкой о частоте тока( 50 Гц).

Номинал, равный сечению провода, следит за недопустимостью превышения током нагрузки допустимых показателей, а в случае отклонения от нормы, отключает питание.

Различаются дифавтоматы и по типу электромагнитного расцепителя, в зависимости от величины пускового тока они могут быть разной чувствительности:

B — предназначена для работы с превышениями норм от 3 до 5 раз. Этот вариант наиболее приемлем в случаях минимальной нагрузки на сеть, его часто устанавливают на дачах;

С — максимальная перегрузка колеблется в интервале от 5-10 раз. Оптимальное место установки – жилые квартиры и дома;

D — отключение происходит, если номинал превышен в 10-20 раз. В основном устанавливаются на предприятиях, фабриках или офисных помещениях, требующих больших энергозатрат.


Автоматический дифференциальный выключатель в разрезе

Еще один параметр, на который стоит обратить внимание при выборе такого устройства – это отключающий дифференциальный ток и его класс. Обычно для потребительских сетей используют дифавтоматы с номиналом тока утечки 10 мА (линия с единственным потребителем) или 30 мА (более распространенные устройства, применяемые для нескольких потребителей).

Немаловажной характеристикой защитного устройства является и его класс ограничения силы тока, а также номинальная отключающая способность. В случае резких перепадов напряжения или максимальной сетевой нагрузки, необходимо понимать, насколько быстро отреагирует защитное устройство на нештатную ситуацию. Именно это показывает класс токоограничения дифавтомата, в зависимости от класса (по нарастающей от 1 до 3), устройство отключает электропитание в случае аварии. Предпочтение отдается дифавтоматам 3 класса, как самым быстродействующим. К сожалению, стоимость такого устройства будет гораздо выше подобных дифавтоматов более низкого уровня.

Эксплуатационные условия

Основные модели дифференциальных автоматов довольно чувствительны к погодным условиям и предполагают эксплуатацию при температурах от -7°C до +30°С. В случаях, когда дифференциальный автомат будет расположен на улице, в неотапливаемом здании, а также в помещениях с резкой сменой температур или периодическим посещением, необходимо выбирать модели защитных устройств, устойчивые к минусовым температурам. На внешнем корпусе такого устройства производители ставят специальный значок в форме снежинки, обозначающий, что данный дифавтомат будет корректно работать даже при очень низких температурах (до -30°С). Цена таких устройств тоже будет значительно выше стоимости обыкновенных моделей.


Дифференциальный автомат IEK ВД1-63

Как подключить защитное устройство

В верхней части корпуса дифавтомата находятся юстировочные винты и контактные пластины для подсоединения фазы и нуля, идущих со счетчика. Снизу расположены контакты для подключения самой линии.

Подключить устройство непосредственно в электрическом шкафу тоже довольно просто. Единственный нюанс – по окончании сборки необходимо дополнительно, с максимальным усилием, закрепить контакты. Делается это потому, что обычно применяются медные провода, а, как известно, медь довольно мягкий металл.

Наиболее популярная схема подключения


Схема подключения дифавтомата на входе

Существует несколько способов подключения дифавтомата. Наиболее востребованной стала схема с установкой устройства сразу после счетчика – на входе. Преимущество такого подключения состоит в том, что в случае возникновения аварийной ситуации, отключение электропитания будет произведено по всем потребителям одновременно. Недостаток состоит в том, что из-за полного обесточивания становится довольно сложно определить, где именно случилась поломка. Эта проблема решается установкой после основного дифавтомата отдельных защитных устройств для каждой группы потребителей. В этом случае, существует возможность поочередного включения и определения причины поломки после срабатывания защиты.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 4 чел.
Средний рейтинг: 5 из 5.

Как отличить Дифференциальный автомат от УЗО?

Сперва рассмотрим принцип работы УЗО. Внутри УЗО находится специальный трансформатор, в котором каждый из проводников (L-фаза, N-нуль) создает электромагнитное поле. При нормальной работе они друг друга аннулируют. При возникновении утечки тока, в катушке происходит дисбаланс электромагнитного поля, в итоге, стержень толкает рычаг на выключение. Такое устройство срабатывает на выключение от утечки тока, но не предназначено для защиты от коротких замыканий и перегрузок сети.

Как работает дифференциальный автоматический выключатель (диф. автомат)?

Теперь поговорим о диф.автомате (дифференциальной защите тока и общей защите). Прибор предназначен для защиты цепи от утечки тока (аналогично работе Узо), но преимущество диф. автомата заключается в том, что в него встроен автоматический выключатель, который выполняет функцию защиты цепи от коротких замыканий и перегрузок. Два в одном: УЗО+ Автоматический выключатель= Дифференциальный автомат. Получился своего рода технический симбиоз.

Трехфазный дифференциальный автомат

Если под обычным Узо устанавливают 3 или 4 группы отдельных автоматических выключателей, то диф.автомат обеспечивает отдельную группу для защиты электрической цепи. Под диф.автоматом не устанавливают автоматические выключатели, он несет самостоятельную ответственность за короткое замыкание (КЗ), перегрузку электрической цепи и утечку тока в землю. Можно конечно и поставить автоматические выключатели под диф. автоматом, но это расточительно.

Читайте следующие статьи про УЗО:

Где устанавливают дифференциальные автоматические выключатели?

Устанавливают диф.автомат там, где требуется постоянное питание приборов, например, таких приборов как: охранная сигнализация, пожарная сигнализация, морозильник, компьютер и т.д. Группа работает автономно, т.е. на ветке больше никто не сидит. Обычное Узо отсекает сразу три, а то и больше групп, а это значит, что если где-то произошла утечка тока, к примеру, в стиральной машине, УЗО отключит не только её, но и все остальные приборы.

Диф.автомат-надежная заЩИТа!

Что нужно учесть устанавливая дифференциальный автоматический выключатель?

При установке необходимо учесть габариты диф.автомата. Обычное УЗО — размером в 2 модуля, тогда как диф.автомат — на все 4 модуля в однофазной сети. В зависимости от того, сколько вы хотите проложить отдельных групп, следует подобрать соответствующий распределительный щит для автоматических выключателей дифференциального тока, очень уж много они занимают пространственного места. Но есть диф. автоматы размером в 2 модуля — более компактные, которые позволяют сэкономить в распределительном щите много места.

Обязательно прочитайте следующую статью про установку реле «Почему нужно устанавливать реле контроля напряжения?»

Оцените качество статьи:

ФУНКЦИИ, ПРИНЦИПЫ РАБОТЫ И КЛАССИФИКАЦИЯ — FAHADH V HASSAN

Дифференциал — очень важная часть транспортного средства, поскольку в качестве компонента передачи мощность двигателя передается на колеса. Мощность двигателя передается задним карданным валом на колесо, сначала измененное направление вращения посредством дифференциального вращения, затем передается на валы задней оси, а затем на задние колеса.

Дифференциальные функции для уменьшения скорости, получаемой карданным валом, для создания большого момента и для изменения направления вращения карданного вала 900 передаются на колесо следующего круга через задний вал задней оси отдельно.Однако, если дифференциал не работает, это приведет к тому, что автомобиль не сможет работать A.

КАК ЭТО РАБОТАЕТ?

В то время прямая дорога.

Во время движения автомобиля по прямой, колеса задней оси будут экранированы ведущей шестерней через корпус кольцевого зубчатого колеса дифференциала, вал-шестерню дифференциала колесо-колесо, шестерни дифференциала колесо-шестерня, зубья боковой шестерни не вращаются, остаются быть втянутым во вращение коронной шестерни. Таким образом, вращение колеса влево и вправо одинаково.

На момент поворота.

При повороте машины влево левое колесо заключенных больше правого. Если корпус дифференциала с коронной шестерней вращается, шестерня будет вращаться вокруг своей оси, а также вокруг левой шестерни, поэтому круглая правая шестерня увеличивается, сторона, на которой число оборотов шестерни в 2 раза больше. коронная шестерня. Можно сказать, что средняя вторая круглая шестерня сравнима с вращающейся коронной шестерней.как это должно.

ПРИНЦИП РАБОТЫ ДИФФЕРЕНЦИАЛА

Основной принцип работы дифференциального редуктора можно понять, используя оборудование, состоящее из двух шестерен, шестерни и рейки. Обе стойки можно перемещать в вертикальном направлении до тех пор, пока стойка для грузов и сопротивление скольжению будут подниматься одновременно. Устанавливается между зубчатой ​​рейкой и ведущей шестерней, соединенной с распорками, и может перемещаться с помощью этих распорок. Когда на каждую рейку помещается одинаковая нагрузка «W», а затем подтягиваются скобы (скоба), вторая рейка поднимается на такое же расстояние, что предотвращает вращение ведущей шестерни.Но если на левую стойку и буфер шестерни будет возложена большая нагрузка, тогда вдоль зубчатой ​​рейки вращается нагрузка, то нагрузка становится тяжелее, что связано с различиями в заключенных, которым дается ведущая шестерня, поэтому тем меньше нагрузка будет снята. . Расстояние между поднятыми рейками пропорционально количеству оборотов ведущей шестерни. Другими словами, эта стойка становится еще больше, а заключенные, получившие меньший груз, будут перемещаться. Этот принцип используется при проектировании дифференциальных передач.

ФУНКЦИИ ДИФФЕРЕНЦИАЛА

1. Уменьшает число оборотов коробки передач перед передачей на задние оси.
2. Изменяет направление оси вращения силового агрегата на 90o, т.е. с продольного на поперечное.
3. Для равномерного распределения мощности на обе задние ведущие оси, когда трактор движется прямо.
4. Распределить мощность согласно требованиям на ведущие оси во время поворота i.е. Внешнему колесу требуется больше оборотов по сравнению с внутренним — во время поворотов.

ОСНОВНЫЕ КОМПОНЕНТЫ ДИФФЕРЕНЦИАЛА

1. Ведущая шестерня
2. Ведущая шестерня
3. Кожух дифференциала
4. Звездочка дифференциала
5. Шестерня дифференциала (солнечная)

ВИДЫ ДИФФЕРЕНЦИАЛОВ

1. Открытый дифференциал
2. Заблокированный дифференциал
3. Вязкостной дифференциал повышенного трения
4. LSD с механической муфтой (включая eLSD)
5.Дифференциал Torsen & Helical
6. Дифференциал вектора крутящего момента

1. Открытый дифференциал

Открытые дифференциалы — это основная форма дифференциала. Цель состоит в том, чтобы учесть разные скорости между двумя колесами, в то время как разделение крутящего момента поддерживается постоянным на уровне 50/50. Распространенное заблуждение, связанное с открытыми дифференциалами, состоит в том, что когда одно колесо поднимается, на него передается 100 процентов крутящего момента. Это неверно, однако величина крутящего момента, передаваемого на колесо с тягой, очень мала, потому что величина крутящего момента, необходимого для вращения колеса, также мала.Помните, что оба колеса всегда получают равный крутящий момент, но если одно из них не имеет сопротивления (например, если оно находится в воздухе), величина крутящего момента, передаваемого на ведущую ось, в результате будет очень низкой.
• Разделяет крутящий момент двигателя на два выхода.
• Позволяет колесам вращаться с разной скоростью.
• Когда одна шина теряет сцепление с дорогой, противоположная шина также теряет мощность.
• Встречается в семейных седанах и автомобилях эконом-класса

Преимущества:
• Позволяет использовать совершенно разные скорости вращения колес на одной оси, что означает отсутствие проскальзывания колес при повороте, поскольку внешняя шина будет двигаться дальше.
• С точки зрения эффективности, меньше энергии будет потеряно из-за дифференциала по сравнению с альтернативными вариантами.
• Стоимость.

Недостатки:
• Когда одно колесо имеет плохое сцепление с дорогой, это резко ограничивает мощность, которую автомобиль может выдать. Поскольку распределение крутящего момента всегда составляет 50/50, если одно колесо не может выдать большую мощность, другое получит столь же низкий крутящий момент.

2. Заблокированный дифференциал (включая запорные и сварные дифференциалы)

Заблокированные дифференциалы находятся на противоположной стороне спектра по сравнению с открытыми дифференциалами.Цель состоит в том, чтобы скорость вращения колес между двумя колесами оставалась постоянной, и главное преимущество здесь заключается в том, что крутящий момент будет передаваться на колесо с тяговым усилием, до 100 процентов на одном колесе. При использовании на бездорожье дифференциал обычно имеет функцию блокировки, благодаря которой он открывается при движении по асфальту.
• Соединенные колеса всегда вращаются с одинаковой скоростью
• Поворачивать автомобиль может быть очень сложно
• Встречается в Jeep Wrangler и большинстве полноразмерных грузовиков

Преимущества:
• Обеспечивает передачу крутящего момента на колесо с наибольшим сцеплением.Для всех типов дифференциалов это позволит достичь наибольшего крутящего момента на земле при любом состоянии поверхности.
• Для бездорожья, когда износ шин не является проблемой, это почти все, что нужно. Надежный, простой и очень эффективный.
• В ситуациях, когда желательно поддерживать постоянную скорость вращения колес на оси (например, занос), это простое решение (сварной дифференциал работает точно так же).

Недостатки:
• Заблокированный дифференциал не допускает разницы в скорости вращения правого и левого колес.Это означает дополнительный износ шин и, как следствие, заедание трансмиссии.

3. Вязкостной дифференциал повышенного трения (VLSD)

VLSD довольно просты в эксплуатации, однако у них есть некоторые недостатки по сравнению с другими формами LSD.
• Комбинация открытого и заблокированного дифференциалов
• Обычно действует как открытый дифференциал
• Автоматически блокируется при проскальзывании
• Применяется в спортивных автомобилях, таких как Nissan 370Z и Mazda MX-5 Miata

Преимущества:
• Позволяет использовать разные скорости вращения колес на оси, тем самым снижая износ шин по сравнению с заблокированным дифференциалом (то же самое относится ко всем формам LSD, но этот стиль особенно хорош для этого).
• Позволяет передавать крутящий момент на колесо с большим сцеплением.
• Очень плавная работа, как правило, не имеет неуклюжести на низкой скорости, присущей другим типам LSD, движущимся в узком радиусе (например, на парковках).

Недостатки:
• Невозможно полностью заблокировать, система требует разницы скоростей между двумя сторонами для передачи крутящего момента.
• По мере нагрева внутренней трансмиссионной жидкости (в случаях, когда она используется слишком часто) эффект LSD будет уменьшаться.

4. LSD с механической муфтой (включая eLSD)

LSD с муфтой сцепления бывают самых разнообразных. односторонний, 1,5-ходовой, двусторонний и даже электронный. В принципе, все они работают очень похоже, с блоком сцепления, который пытается заблокировать дифференциал, позволяя передавать крутящий момент на колесо с максимальным сцеплением.

Преимущества:
• Применяет блокировку при открытии дроссельной заслонки. В отличие от VSLD, это означает, что разделение крутящего момента может произойти до того, как одно колесо достигнет другой скорости (аналогично заблокированному дифференциалу).
• Для односторонних LSD дифференциал действует как открытый дифференциал, когда он не на газе, что позволяет легко изменять скорость колес при прохождении поворотов.
• Для двухсторонних LSD дифференциал применяет блокирующее усилие при замедлении, что в некоторых случаях может помочь в стабильности торможения.
• Хорошо работает, даже если одно колесо отрывается от земли или имеет ограниченное сцепление с дорогой.
• Электронные LSD позволяют управлять включением сцепления с помощью бортовых компьютеров, оптимизируя блокировку в зависимости от условий движения.

Недостатки:
• Часто требуется регулярная замена масла, и сцепления могут изнашиваться, в конечном итоге требуя замены.
• Электронные LSD увеличат стоимость и сложность.

5. Torsen и спиральные дифференциалы

Дифференциалы

Torsen и косозубые дифференциалы работают примерно одинаково, используя умную передачу для приложения силы блокировки для передачи крутящего момента на колесо с большим сцеплением. Они отлично подходят для уличного использования и даже для использования на легких дорожках, хотя у них есть недостаток.

Преимущества:
• Эти дифференциалы начинают передавать больший крутящий момент на медленно вращающееся колесо в тот момент, когда между ними возникает разность скоростей. По сути, он реагирует намного быстрее, чем VLSD.
• Это чисто механические системы, не требующие текущего обслуживания, поскольку действие дифференциала зависит от трения в шестернях.

Недостатки:
• Когда одно колесо находится в воздухе, дифференциал Torsen действует так же, как открытый дифференциал, и на ведущую ось передается очень небольшой крутящий момент.Для уличного использования это вполне приемлемо, но это может быть проблемой для более специализированных транспортных средств на трассе.

6. Дифференциал с вектором крутящего момента (TVD)

Без сомнения, самая сложная из дифференциалов, эта опция обеспечивает максимальный контроль со стороны разработчиков, что означает уникальное программирование, позволяющее реагировать на любую ситуацию, а также способность вызывать рыскание.
• Использует дополнительные зубчатые передачи
• Точно регулирует крутящий момент, передаваемый на каждое ведущее колесо
• Может замедлять или ускорять поворот автомобиля на повороте
• Тяжелый, сложный и низкопроизводительный для экономии топлива
• Применяется в BMW X5 M или Lexus RC F

Преимущества:
• Позволяет передавать больший крутящий момент на внешнее колесо при прохождении поворотов.Обычно LSD передает крутящий момент на колесо, которое вращается с меньшей скоростью. Это связано с тем, что большая скорость вращения колеса воспринимается как пробуксовка, поэтому LSD блокируется, чтобы передать больший крутящий момент на более медленное колесо и предотвратить пробуксовку колеса. При ускорении на выходе из поворота TVD передает больший крутящий момент на внешнее колесо, помогая вызвать рыскание и повернуть транспортное средство.
• Позволяет проектировщику полностью контролировать, система может выбирать, в каких ситуациях автомобиль будет передавать больший крутящий момент на любое колесо, а не реагировать.
• Может передавать до 100% доступного крутящего момента на одно колесо.

Недостатки:
• Стоимость и сложность

Поделиться этой записью:

в Твиттере

на Фейсбуке

в Google+

в LinkedIn

Нравится:

Нравится Загрузка …

Связанные

Как работает дифференциал? 3 вопроса

Нет автомобилей без дифференциалов — иначе мы ехали бы по крутым поворотам с пробуксовкой колес и визгом шин. Этот важный компонент расположен в центре ведущей оси, где его функция заключается в обеспечении того, чтобы два колеса могли вращаться с разной скоростью при движении по поворотам, имея при этом одинаковую тяговую мощность.Крутящий момент двигателя всегда делится в фиксированном соотношении.
Кстати: У полноприводных автомобилей есть дифференциал на каждой оси, плюс центральный дифференциал, который распределяет мощность двигателя между осями в заданном соотношении.

Основным техническим принципом обычно является так называемая коническая дифференциальная передача с клеткой дифференциала, двумя планетарными шестернями и двумя выходными валами. Важнейшей особенностью является то, что две планетарные шестерни образуют соединение между приводом двигателя и двумя выходными валами, но делают это по-разному:

  • При движении прямо: Двигатель приводит в движение клетку дифференциала.Планетарные передачи в это время неподвижны. В результате сепаратор и два выходных вала вращаются с одинаковой скоростью. Это означает, что два колеса на оси также вращаются с одинаковой скоростью.
  • При движении по поворотам: Теперь внешнее колесо на оси должно преодолевать большее расстояние, поэтому два выходных вала должны вращаться с разной скоростью. Для этого планетарные шестерни дифференциала вращаются вокруг своих осей с разной скоростью. Это уравновешивает разницу в скоростях двух колес.

Основной технический принцип дифференциала становится проблемой, когда две шины на ведущей оси движутся по поверхностям с разным сцеплением, например, по льду и сухому асфальту. Колесо на льду будет вращаться, а другое вообще не двинется. Автомобиль «застрянет». Это происходит потому, что дифференциал распределяет мощность двигателя в соответствии с сопротивлением шин. Колесо на льду, естественно, имеет значительно меньшее «сопротивление», поэтому дифференциал распределяет на него всю мощность привода.Блокировка дифференциала помогает поддерживать движение в таких ситуациях. Они передают привод обратно на шину, которая вращается медленнее или не вращается совсем. Блокировки дифференциала бывают разных типов.
Очень ясное и понятное объяснение основного принципа дифференциала дает этот короткометражный фильм от 1937 года:

Как работает дифференциал? 3 вопроса — 3 ответа последний раз изменялись: 10 марта 2021 г., Маркус Исгро

Как работает дифференциал?

Нефтяники любят свою терминологию.Коллектор, крутящий момент, дифференциал. Энтузиасты используют эти термины с большим энтузиазмом, в то время как средний автомобилист кивает, не зная, что обсуждается.

Если вы поклонник Top Gear или его мега-бюджетного конкурента: The Grand Tour, вы можете узнать выражение «дифференциал с ограниченным скольжением». Вы, наверное, знаете, что это положительный момент и используется на высокопроизводительных автомобилях, но, возможно, не совсем понимаете, почему.

Чтобы ускорить процесс, давайте начнем с объяснения того, что на самом деле представляет собой дифференциал.

ЧТО ТАКОЕ ДИФФЕРЕНЦИАЛ?

Проще говоря, дифференциал — это система, которая передает крутящий момент двигателя на колеса. Дифференциал забирает мощность от двигателя и разделяет ее, позволяя колесам вращаться с разной скоростью.

Вы, наверное, спросите, почему мне нужно, чтобы колеса вращались с разной скоростью друг от друга?

Если вы заправляетесь бензином, это, вероятно, до боли очевидно. Опять же, если вы бензин, вы бы не читали статью, объясняющую, как работает дифференциал.

Все сводится к основам физики.

Представьте себе вагонетку из картона с колесами от молочных бутылок, навинченными на соломенные оси. Вы можете катать его вперед и назад сколько угодно. Он будет катиться свободно и плавно.

Поверните его за угол, и у вас не будет проблем, так как каждое колесо может вращаться независимо от другого.

Теперь попробуйте приклеить колеса к оси соломинки. Вы заметите, что колеса теперь скользят по полу, когда вы пытаетесь повернуться.Это связано с тем, что каждое из колес должно пройти разное расстояние, но заблокировано вместе на одной оси.

Давайте поднимем его на ступеньку выше. Представьте, что вы пытаетесь повернуть двухтонный автомобиль на скорости 60 миль в час с заблокированными колесами. Колеса не будут просто прыгать через дорогу. Их сильно выталкивают на асфальт. Эти огромные силы создают огромную нагрузку на всю конструкцию автомобиля.

Вам вообще будет сложно повернуть, не говоря уже о плавности и безопасности на высоких скоростях.

Инженеры должны были придумать хитроумный способ подключения колес к выходной мощности двигателя, но при этом позволить каждому колесу двигаться со скоростью, отличной от скорости другого.

ЗДЕСЬ КАК ЭТО РАБОТАЕТ

Если посмотреть на современный дифференциал в сборе, он выглядит невероятно сложно.

Однако, если вы разберете его систематически и поймете основы того, чего он пытается достичь и как он пытается этого достичь, вы заметите, что это действительно очень красивая вещь.

Чтобы увидеть дифференциал в ретро-стиле, посмотрите это видео от Chevrolet motors.

Теперь, когда мы понимаем основы дифференциала, или «открытого дифференциала» в данном случае, давайте обсудим еще немного о дифференциале повышенного трения (LSD).

Представьте, что вы на трассе и пытаетесь выйти из крутого поворота на скорости 50 миль в час. Вся эта сила пойдет по пути наименьшего сопротивления.

Весь вес перенесен в одну сторону.Вся эта мощность просто вращает внутреннее колесо, что приводит к огромной потере мощности или вращению и огромной аварии.

LSD существует, чтобы минимизировать эту потерю привода. Система сцепления обеспечивает трение с каждой стороны оси, позволяя автомобилю перераспределять крутящий момент на каждое колесо, позволяя снизить мощность, насколько это необходимо. Если вы умеете управлять рулем, вы даже сможете управлять автомобилем на повороте, используя только мощность.

Как мы уверены, вы можете себе представить: весь дифференциальный механизм должен выдерживать огромную силу, и это лишь одна из причин, почему эти компоненты сделаны из самых прочных материалов.Не соломинки и крышки от молочных бутылок.

Дифференциалы должны быть очень прочными. Когда автомобили были медленнее и менее требовательны, можно было обойтись более дешевыми металлами. Это уже не так.

Даже самые простые автомобили сегодня могут комфортно двигаться со скоростью более 90 миль в час и способны безопасно проходить поворот на относительно высоких скоростях. Высококачественные компоненты больше не предназначены для гоночной трассы.

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ.ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

типов дифференциалов и принцип их работы

Как и большинство других элементов современных автомобилей, простая зубчатая передача, известная как дифференциал, подвергалась постоянным усовершенствованиям и экспериментам, что привело к появлению целого ряда типов, каждый из которых имеет свои преимущества и недостатки.

Концепция дифференциала, то есть позволяющая колесам, установленным на одной оси, вращаться независимо друг от друга, является древней конструкцией, и первый известный пример ее использования был зарегистрирован в Китае в 1 тысячелетии до нашей эры.

Хотя это было задолго до изобретения автомобиля, повозки, повозки и колесницы все еще страдали от той же проблемы, связанной с буксованием или волочением одного колеса на поворотах, увеличивающимся износом и повреждением дорог.

Появление двигателей, приводящих в движение передние или задние колеса для приведения в движение транспортного средства, вместо того, чтобы просто тянуть их на лошади, добавило новую проблему, которую необходимо преодолеть — как обеспечить независимое вращение, сохраняя при этом возможность приводить в действие оба колеса.

Первые автомобили не пытались, они просто приводили в движение только одно колесо на независимой оси.Но это было далеко от идеала, так как это означало, что они были недостаточно мощными и часто сталкивались с проблемами сцепления с дорогой на любом другом участке, кроме твердой, ровной поверхности.

В конечном итоге это привело к разработке открытого дифференциала до того, как были разработаны другие более сложные типы для преодоления более сложных условий вождения.

Посмотрите это видео, в котором с помощью трехмерных изображений объясняется, как работают следующие типы дифференциала:

Открытый дифференциал:

Дифференциал в своей основной форме состоит из двух половин оси с шестерней на каждом конце, соединенных вместе третьей шестерней, составляющих три стороны квадрата.Обычно это дополняется четвертой передачей для дополнительной силы, завершая квадрат.

Этот базовый блок затем дополнительно дополняется кольцевой шестерней, добавляемой к корпусу дифференциала, который удерживает основные основные шестерни, и эта кольцевая шестерня позволяет приводить колеса в движение путем соединения с приводным валом через шестерню.

В этом примере вы можете увидеть три стороны внутреннего зубчатого колеса, составляющего основной механизм, при этом большая синяя шестерня представляет коронную шестерню, которая будет соединяться с приводным валом.На левом изображении показан дифференциал с обоими колесами, вращающимися с одинаковой скоростью, а на правом изображении показано, как внутренние шестерни входят в зацепление, когда одно колесо вращается медленнее, чем другое.

Эта зубчатая передача составляет дифференциал открытого типа и является наиболее распространенным типом автомобильного дифференциала , от которого происходят более сложные системы.

Преимущество этого типа в основном ограничивается основной функцией любого дифференциала, как описано выше, с упором в первую очередь на обеспечение возможности поворота оси более эффективно, позволяя колесу за пределами поворота двигаться с большей скоростью, чем внутреннее колесо. поскольку он покрывает больше земли.Он также выигрывает от того, что его базовая конструкция относительно дешева в производстве.

Недостатком этого типа является то, что, поскольку крутящий момент распределяется равномерно между обоими колесами, количество мощности, которое может передаваться через колеса, ограничивается колесом с наименьшим сцеплением.

По достижении предела тяги обоих колес вместе, колесо с наименьшим тяговым усилием начнет вращаться, что еще больше снижает этот предел, поскольку сопротивление со стороны уже вращающегося колеса еще меньше.

Прочтите наш блог о турбонагнетателях, нагнетателях и безнаддувных двигателях

Заблокированный дифференциал:

Блокировка или блокировка дифференциала — вариант, встречающийся на некоторых транспортных средствах, в первую очередь на тех, которые едут по бездорожью. По сути, это открытый дифференциал с возможностью блокировки на месте для создания фиксированной оси вместо независимой. Это может происходить вручную или с помощью электроники в зависимости от технологии в автомобиле.

Преимущество заблокированного дифференциала заключается в том, что он может получить значительно большее тяговое усилие, чем открытый дифференциал .Поскольку крутящий момент не распределяется поровну 50/50, он может передавать больший крутящий момент на колесо, которое имеет лучшее сцепление с дорогой, и не ограничивается более низким сцеплением другого колеса в любой данный момент.

Поскольку маловероятно, что вы будете двигаться со скоростью и обычно путешествуете по неровной поверхности, проблема торможения и износа шин на поворотах на неподвижной оси является меньшей проблемой.

Одним из недостатков заблокированных дифференциалов называется заедание, которое возникает, когда в трансмиссии накапливается избыточная энергия вращения (крутящий момент), и ее необходимо высвободить — обычно это достигается за счет отрыва колес от земли для сброса положения.Или просто сняв замки, когда они больше не нужны.

Представьте себе длинную картонную трубку, удерживаемую на каждом конце, а затем скручивающую трубку в противоположных направлениях до такой степени, что трубка не могла больше выдерживать силу, складывалась и рвалась — это связывание. Это происходит потому, что колеса движутся с разной скоростью, что приводит к скручиванию осей и увеличению давления на шестерни, но нагрузки на колеса и их повышенного тягового усилия достаточно, чтобы предотвратить проскальзывание шин и сбросить давление.

Сварной / золотниковый дифференциал:

Сварные дифференциалы, по сути, такие же, как заблокированный дифференциал, только он был постоянно приварен из открытого дифференциала к фиксированной оси (также известный как дифференциал золотника). Обычно это делается только в определенных обстоятельствах, когда характеристики заблокированного дифференциала / Фиксированная ось, которая облегчает одновременное вращение обоих колес, желательны — например, в автомобилях, предназначенных для дрифта.

Обычно это не рекомендуется, так как тепло от сварки может снизить прочность компонентов и увеличить риск катастрофического отказа детали — что может даже привести к тому, что сломанные шестерни дифференциала взорвутся через корпус дифференциала и представляют опасность для других участников дорожного движения и пешеходов.

Дифференциал повышенного трения:

LSD объединяет преимущества открытого и заблокированного дифференциалов через более сложную систему. Есть две категории, которые используют разные формы сопротивления для достижения одного и того же эффекта:

Механическое сцепление LSD:

Этот тип LSD окружает ту же самую центральную шестерню, видимую на открытом дифференциале, парой нажимных колец, которые оказывают усилие на два набора дисков сцепления, расположенных рядом с шестернями.Это обеспечивает сопротивление независимому вращению колес, изменяя действие дифференциала с открытого на заблокированный — и обеспечивая ему повышенное тяговое усилие, которое этот тип выигрывает от более открытого дифференциала.

На этом разрезе вы можете видеть нажимные кольца (также срезанные), окружающие центральные шестерни, которые при вращении раздвигаются центральными штифтами шестерни, прижимающимися к наклонным поверхностям. Это движение толкает нажимные кольца на блоки сцепления (желтый и синий) с обеих сторон, создавая сопротивление и изменяя поведение оси с открытого на фиксированный.

Блоки LSD с механическим сцеплением

также делятся на подтипы, которые ведут себя немного по-разному и изменяются при воздействии давления на диски сцепления и нажимные кольца:

  • В одностороннем LSD давление действует только при ускорении. Это означает, что при прохождении поворотов и выключении питания дифференциал ведет себя как открытый тип, позволяя им поворачиваться независимо, но при ускорении принудительное вращение дифференциала создает трение в дисках сцепления, блокируя их на месте, чтобы получить больше тяги.
  • A LSD с двусторонним движением делает шаг вперед и оказывает давление на диски сцепления также при замедлении, чтобы улучшить устойчивость при торможении на дорожном покрытии с изменчивой поверхностью.
  • Полуторный снова пытается объединить лучшее из обоих подтипов, оказывая большее давление при ускорении и меньшее — при замедлении.

Обратной стороной механических LSD является то, что они требуют регулярного обслуживания для поддержания работоспособности и склонны к полному износу, что приводит к дорогостоящей замене деталей.

Вязкий LSD:

Второй тип дифференциала повышенного трения, в котором вместо муфт используется густая жидкость для создания сопротивления, необходимого для изменения поведения дифференциала между разомкнутым и заблокированным состояниями. Из-за того, что у них меньше движущихся частей, чем у механических LSD, VLSD проще, но также имеют более широкий спектр преимуществ и недостатков по сравнению с ними.

В своей основной работе эффект более плавный в применении, чем механические LSD, поскольку сопротивление растет в унисон со скоростью, на которой движутся колеса по сравнению с корпусом дифференциала, обеспечивая очень постепенное увеличение.

VLSD

также могут более эффективно направлять крутящий момент на колесо, у которого больше тяги . Поскольку жидкость действует так, чтобы сопротивляться пониженной скорости, если колесо когда-либо теряет сцепление с дорогой и вращается, разница в скорости между двумя колесами внутри дифференциала создает большее сопротивление более медленному колесу, передавая больший крутящий момент от ведущего вала на него.

VLSD становятся менее эффективными при длительном использовании, поскольку жидкость нагревается, они становятся менее вязкими и обеспечивают меньшее сопротивление.Он также не может блокироваться так же полно, как механический LSD, из-за того, что жидкость не может обеспечить абсолютное сопротивление в подходящем пространстве.

Недостатком как механических, так и вязких LSD является то, что система не всегда эффективно направляет крутящий момент во время прохождения поворотов на высокой скорости, поскольку она может интерпретировать более быстро движущееся внешнее колесо как потерю сцепления. Затем он передает крутящий момент на внутреннее колесо, создавая избыточную / недостаточную поворачиваемость в момент, противоположный тому, когда это необходимо.

Дифференциал Torsen:

В дифференциале Torsen ( Tor que — Sen sing) используется хитроумная передача, обеспечивающая тот же эффект, что и дифференциал с ограниченным скольжением, без необходимости использования муфт или гидравлического сопротивления.

Это достигается за счет добавления слоя червячной передачи к традиционной передаче открытого дифференциала. Эти наборы червячных шестерен, действующих на каждую ось, обеспечивают сопротивление, необходимое для передачи крутящего момента, которое затем достигается за счет того, что червячные шестерни находятся в постоянном зацеплении друг с другом через соединенные прямозубые цилиндрические шестерни.

На первом и втором изображениях показаны три пары червячных шестерен, находящихся в зацеплении с каждой половиной оси — с цилиндрическими шестернями на конце каждого червяка, соединяющими пары.Именно это соединение передает крутящий момент от одного колеса к другому, когда одна ось начинает вращаться быстрее, чем другая. В то время как первое и второе изображения имеют оригинальный дизайн торсена, третье изображение представляет собой вторую версию дифференциала торсена. В новой конструкции червячные шестерни переставлены на одну линию с осями, но при этом выполняют то же механическое действие. Каждая червячная передача все еще находится в контакте со своей парой, и только одна сторона оси с промежутками в шестерне удаляет зацепление с другой стороны.

Постоянное зацепление между двумя сторонами дифференциала имеет дополнительное преимущество, заключающееся в немедленной передаче крутящего момента, что делает его чрезвычайно чувствительным к изменяющимся дорожным и дорожным условиям.

В то время как открытый дифференциал всегда должен распределять крутящий момент 50/50 между каждым колесом, дифференциал Torsen способен направлять больший процент крутящего момента через одно колесо в зависимости от передаточных чисел шестерен. Этот устраняет ограничение мощности, которое испытывают открытые дифференциалы , потому что величина доступного крутящего момента не ограничивается величиной тяги в любом колесе.

Кроме того, зубчатая передача также может быть обработана таким образом, чтобы придавать другое отношение сопротивления при ускорении и замедлении, как это делает полутораходовой дифференциал повышенного трения.

Все это достигается механически без использования электроники или каких-либо скоропортящихся деталей, приносимых в жертву трению, и в целом дифференциал Torsen является превосходной механической системой , которая сочетает в себе основные преимущества всех перечисленных ранее типов дифференциалов.

Прочтите наш блог о трансмиссиях с двойным сцеплением и принципах их работы

Активный дифференциал:

Очень похоже на дифференциал повышенного трения, в активном дифференциале по-прежнему используются механизмы, обеспечивающие сопротивление, необходимое для передачи крутящего момента с одной стороны на другую, но вместо того, чтобы полагаться на чисто механическую силу, эти муфты могут активироваться электронным способом.

Активный дифференциал может использовать электронику для искусственного изменения механических сил, которые система испытывает при изменении условий движения.Это делает их управляемыми и, следовательно, программируемыми, а с помощью ряда датчиков на транспортном средстве компьютер может автоматически определять, на какие ведущие колеса и когда направить мощность.

Это радикально улучшает характеристики, особенно на несовершенном дорожном покрытии, и особенно нравится водителям ралли, чьи автомобили выдерживают быстро меняющиеся условия вождения и нуждаются в системе, которая может не отставать от их непрерывных регулировок транспортного средства.

Дифференциал с вектором крутящего момента:

TVD продвигает эту усовершенствованную с помощью электроники систему еще дальше, используя ее для управления углом или вектором транспортного средства в поворотах и ​​выходе из них, побуждая определенные колеса получать больший крутящий момент в ключевые моменты, что улучшает характеристики прохождения поворотов.

Активируя сцепление, противоположное тому, что обычно включает LSD с чисто механическим приводом, вы можете использовать этот эффект для помощи в управлении, а также снизить мощность, преодолевая недостатки системы LSD.

При входе в поворот, многоходовой LSD оказывает сопротивление обоим колесам, чтобы хотя бы частично заблокировать ось и стабилизировать ее при торможении, которое затем высвобождается, когда скорость колес падает и автомобиль поворачивает, позволяя колесам вращаться. на разных скоростях.

Однако вместо того, чтобы ослабить сопротивление на обоих колесах, TVD продолжает активировать сцепление только на внешнем колесе, увеличивая сопротивление, испытываемое этим колесом, и заставляя систему передавать через него больший крутящий момент. Этот дисбаланс внешней силы способствует более резкому повороту автомобиля в повороте и снижению недостаточной поворачиваемости.

Продолжая применять это сопротивление через поворот, когда транспортное средство проходит вершину и начинает ускоряться, оно будет продолжать игнорировать нормальный многосторонний LSD, который снова будет интерпретировать более быстрое движение внешнего колеса как пробуксовку и отвлекать крутящий момент во время ускорения до внутреннее колесо, которое воспринимается как лучшее сцепление.

Когда TVD оказывает большее сопротивление муфте внешнего колеса, он обманом заставляет систему отводить через него больший крутящий момент — увеличивая мощность, которую можно приложить , и уменьшая недостаточную поворачиваемость, возникающую при ускорении на выходе из поворота.

Желтая стрелка указывает на передачу крутящего момента, происходящую через угол, создаваемую искусственным сопротивлением, оказываемым TVD на внешнее колесо. Это позволяет добиться большего ускорения на выходе из поворота, в то же время повышая поворачиваемость автомобиля.

Дифференциал с вектором крутящего момента способен передавать 100% доступного крутящего момента через одно колесо, когда это необходимо в самых экстремальных обстоятельствах.

Обратной стороной этой системы является то, что она очень сложна и очень дорога, и обычно используется только для гонок / треков из-за ее потенциала для прохождения поворотов на высокой скорости.

У каждой системы есть свои преимущества и недостатки, и хотя более сложные системы, как правило, лучше, их стоимость намного превышает стоимость более простых систем.

Как и в случае с любыми другими автомобильными технологиями, польза от каждой системы зависит от того, что именно вы будете делать со своим автомобилем и на что должен быть способен ваш дифференциал. У вас не будет особой нужды в дифференциале векторизации крутящего момента при посещении местного супермаркета, если только вы не воображаете себя в следующем WRC и не можете позволить себе штраф — но вам может понадобиться дифференциал блокировки, если вы живете в сельской местности. лучше доступен для внедорожника.

Щелкните здесь для визуального просмотра различных типов дифференциала.

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ. ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

Как это работает: дифференциал

Передача мощности двигателя на землю в транспортном средстве или сельскохозяйственной машине обычно означает передачу крутящего момента от маховика двигателя через трансмиссию, а затем его поворот на 90 градусов для вращения оси, соединенной с колесами.Простые конические шестерни допускают такое изменение направления, но есть еще одна проблема, которую необходимо преодолеть: если машина не всегда движется по идеально прямой линии, бывают случаи, когда ведомое колесо на одной стороне оси должно двигаться. большее или меньшее расстояние, чем другое.

Вот почему. Когда машина движется по кривой или делает поворот, колесо на внешней стороне движется дальше, потому что оно следует по дуге с большим радиусом, чем его партнер на внутренней стороне поворота.Чтобы преодолеть дополнительное расстояние за такое же время, это колесо должно двигаться быстрее, чем его партнер, даже если общая скорость машины остается постоянной. В то же время внутреннее колесо должно замедляться на равную величину. Если бы мощность передавалась на оба колеса с одинаковой скоростью, каждое из них должно было бы скользить по поверхности дороги, чтобы позволить машине поворачиваться, что затрудняет или делает невозможным рулевое управление.

Статьи по теме

Таким образом, работа дифференциала заключается в том, чтобы позволить мощности двигателя непрерывно поступать на ведущую ось, поддерживать движение автомобиля с постоянной скоростью, но при этом позволять двум колесам изменять скорость вращения.И он должен позволять постоянно изменять разницу в фактических скоростях вращения колес по мере продолжения поездки.

Самый простой способ понять, как это работает дифференциал, — это сначала поговорить о том, что делает каждый компонент внутри него. Дифференциал расположен в центре картера моста или шасси машины. Колеса с каждой стороны машины прикреплены к отдельным полуосям, которые входят в деталь, называемую корпусом дифференциала, который вращается внутри картера моста. Мосты приводятся в движение на концах коническими шестернями, называемыми боковыми шестернями дифференциала.Эти две шестерни взаимодействуют с двумя ведущими шестернями, установленными на валу внутри корпуса дифференциала. Ведущие шестерни передают вращение картера дифференциала на боковые шестерни дифференциала и, следовательно, на полуоси. Корпус дифференциала, в свою очередь, приводится в движение зубчатым венцом, которое вращается ведущей шестерней, соединенной с карданным валом от трансмиссии.

Если все это звучит немного запутанно, прилагаемые изображения ниже помогут вам визуализировать, как все эти части сочетаются друг с другом.На самом деле все это гениально просто.

(щелкните изображение, чтобы увеличить)

Две шестерни внутри корпуса дифференциала могут свободно вращаться на своем валу. Поскольку их работа заключается в передаче привода на боковые шестерни дифференциала на осевых валах при вращении корпуса дифференциала, их способность вращаться на валу важна для того, чтобы каждый вал оси мог вращаться с разной скоростью, когда это необходимо.

Во время поворота трение шины о поверхность дороги приводит к тому, что ось на внутренней стороне кривой имеет большее сопротивление, она начинает вращаться медленнее, чем ось на внешней стороне.Это заставляет ведущие шестерни «ходить» (вращаться) по своему валу и увеличивать скорость привода, передаваемую на вал внешней оси (и колесо), на величину, равную уменьшению скорости внутренней оси. Общая скорость машины остается постоянной, при этом одно колесо ускоряется, а другое замедляется.

Проблема с дифференциалами заключается в том, что они всегда пропускают мощность на ведущий вал с наименьшим сопротивлением, что может вызвать проблемы в условиях плохой тяги. Например, если одно колесо находится на льду, а другое имеет хорошее сцепление с дорогой, мощность привода, вероятно, будет направлена ​​на колесо на льду, поскольку оно имеет меньшее сопротивление крутящему моменту.

Чтобы преодолеть этот дефект, используются дифференциалы с ограниченным проскальзыванием или с положительным сцеплением, в которых используются блоки сцепления для ограничения отклонения вращения между двумя полуосями. Конечно, многие сельскохозяйственные машины, особенно тракторы, доступны с ручной блокировкой дифференциала, которая обеспечивает равномерное распределение крутящего момента на обе оси. Но это уже тема для другого вопроса.

Конструкция и работа дифференциала в автомобиле — MechStuff

В моей предыдущей статье мы видели, как поезда поворачиваются на кривых путях.Что ж, в автомобилях мы не можем использовать тот же принцип для поворота за угол, поскольку наши машины не едут по рельсам. Поэтому мы не можем проектировать наши шины как колеса поезда. В начале автомобилестроения только одно заднее колесо приводилось в движение двигателем. Но если только одно колесо приводилось в движение двигателем, ему приходилось выполнять всю работу, а также он не мог поддерживать хорошее сцепление с дорогой.

Итак, если мы приводим в движение или подаем мощность на оба колеса, внешнему колесу приходилось преодолевать большее расстояние, чем внутреннему, за время поворота.Вот почему нам нужен дифференциал — чтобы оба колеса двигались с разной скоростью!

Конструкция дифференциала: —

Стандартный дифференциал в основном состоит из 3 частей —
1. Ведущая шестерня
2. Кольцевая шестерня и
3. Крестовина

Ведущая шестерня передает мощность от двигателя к зубчатый венец. Крестовина расположена на внутреннем крае зубчатого венца. Крестовина может свободно вращаться по 2 осям —

1. вместе с вращением коронной шестерни &

2.на собственной оси (вращение)
Также крестовина соединена с еще двумя боковыми шестернями.

Работа дифференциала: —

Итак, сначала мощность передается от ведущего вала двигателя на ведущую шестерню, поскольку ведущая шестерня и коронная шестерня находятся в зацеплении, мощность передается на кольцевую шестерню. кольцевая шестерня, к ней течет мощность. Наконец, от паутины мощность передается на обе боковые шестерни.

Когда автомобиль движется по прямой , крестовина не вращается и заставляет ОБЕ боковые шестерни вращаться с одинаковой скоростью.

Когда автомобиль движется по кривой дороге , сама крестовина вращается, и одна из боковых шестерен движется медленнее или быстрее, чем другая. Что будет быстрее, а какое медленнее, определяется поворотом.

Обязательно посмотрите видео. Уверяю вас 100% гарантию понимания всего этого.
Вот демонстрация в самом простом из возможных способов…!
, вы можете перейти к 1:56, если хотите пропустить скучную часть.

[Источник]

Дифференциал повышенного трения —

Дифференциалы повышенного трения или LSD — это самые современные и сложные дифференциалы, используемые сегодня в автомобилях.

Самый большой недостаток обычного дифференциала — это когда пробуксовка возникает только на одном колесе. Дифференциал передает всю мощность тому, у которого наименьшее сопротивление. Это тратит слишком много энергии. Вместе с тем, это не помогает машине выйти из состояния скольжения. Вот тут-то и вступают в действие ЛСД.

Конструкция дифференциала повышенного трения

Дифференциал повышенного трения ограничивает величину крутящего момента или мощности, передаваемой на одно колесо, и передает его на другое колесо.Это делается путем добавления предварительно нагруженной пружины или пакетов сцепления .

Типы дифференциалов повышенного трения —

  1. Фиксированное значение
  2. Чувствительность к крутящему моменту
  3. Чувствительность к скорости и
  4. Электронное управление

Предлагаемая статья для автолюбителей —

Что такое сцепление? Зачем нам это нужно? Рабочие и шрифты с анимацией!

Все виды анимации тормозов, используемые в автомобиле!

Сопутствующие товары

Двигатели | Двигатель Бэббиджа

Двигатели

Чарльз Бэббидж (1791–1871), пионер компьютеров, разработал два класса двигателей: разностные двигатели и аналитические двигатели.Разностные машины называются так из-за математического принципа, на котором они основаны, а именно метода конечных разностей. Прелесть метода в том, что он использует только арифметическое сложение и устраняет необходимость умножения и деления, которые сложнее реализовать механически.

Разностные двигатели — это строго калькуляторы. Они вычисляют числа единственным способом, которым умеют — путем многократного сложения по методу конечных разностей. Их нельзя использовать для общих арифметических расчетов.Аналитическая машина — это гораздо больше, чем просто калькулятор, и она отмечает прогресс от механизированной арифметики вычислений к полноценным вычислениям общего назначения. На разных этапах развития его идей было как минимум три дизайна. Так что говорить об Аналитических машинах во множественном числе строго правильно.

Обнаружение двоичных, десятичных чисел и ошибок

Вычислительные машины

Бэббиджа — десятичные цифровые машины. Они являются десятичными в том смысле, что используют знакомые десять чисел от «0» до «9», и являются цифровыми в том смысле, что только целые числа распознаются как действительные.Числовые значения представлены шестеренками, и каждая цифра числа имеет свое собственное колесо. Если колесо останавливается в положении, промежуточном между целочисленными значениями, значение считается неопределенным, и двигатель спроектирован так, чтобы заклинивать, чтобы указать, что целостность расчета была нарушена. Замедление — это форма обнаружения ошибок.

Бэббидж рассматривал возможность использования других систем счисления, кроме десятичной, включая двоичную, а также систему счисления 3, 4, 5, 12, 16 и 100. Он остановился на десятичной системе из соображений технической эффективности — чтобы уменьшить количество движущихся частей — а также для их повседневное знакомство.

Разностный двигатель № 1

Бэббидж начал в 1821 году с разностной машины № 1, предназначенной для вычисления и табулирования полиномиальных функций. Конструкция описывает машину, которая автоматически вычисляет ряд значений и выводит результаты в таблицу. Неотъемлемой частью концепции дизайна является печатающее устройство, механически связанное с вычислительной секцией и являющееся неотъемлемой частью ее. Разностная машина № 1 — это первая законченная разработка для автоматической вычислительной машины.

Время от времени Бэббидж менял мощность двигателя.На схеме 1830 года изображена машина, рассчитывающая с шестнадцатью цифрами и шестью порядками разницы. Для Engine потребовалось около 25 000 деталей, поровну разделенных между вычислительной частью и принтером. Если бы он был построен, он весил бы приблизительно четыре тонны и был около восьми футов в высоту. Строительство двигателя было остановлено в 1832 году из-за спора с инженером Джозефом Клементом. Государственное финансирование было окончательно прекращено в 1842 году.

Аналитическая машина

Когда строительный проект застопорился и освободился от гаек и болтов детальной конструкции, Бэббидж в 1834 году задумал более амбициозную машину, позже названную Analytical Engine, универсальную программируемую вычислительную машину.

Аналитическая машина обладает многими важными функциями, присущими современным цифровым компьютерам. Его можно было программировать с помощью перфокарт, идея заимствована из жаккардового ткацкого станка, используемого для ткачества сложных узоров на текстиле. Механизм имел «Хранилище», где можно было хранить числа и промежуточные результаты, и отдельную «Мельницу», где выполнялась арифметическая обработка. Он имел внутренний репертуар из четырех арифметических функций и мог выполнять прямое умножение и деление. Он также был способен выполнять функции, для которых у нас есть современные названия: условное ветвление, цикл (итерация), микропрограммирование, параллельная обработка, итерация, фиксация, опрос и формирование импульсов, среди прочего, хотя Бэббидж нигде не использовал эти термины.Он имел множество выходных документов, включая распечатку на бумаге, перфокарты, построение графиков и автоматическое создание стереотипов — лотки из мягкого материала, в которые запечатывались результаты, которые можно было использовать в качестве форм для изготовления печатных форм.

Логическая структура аналитической машины была по существу такой же, как и та, которая доминировала в компьютерном дизайне в электронную эпоху — отделение памяти («Магазин») от центрального процессора («Мельница»), последовательная работа с использованием «цикл выборки-выполнения», а также средства для ввода и вывода данных и инструкций.Назвать Бэббиджа «первым компьютерным пионером» — не просто дань уважения.

Новый двигатель отличия

Когда новаторская работа над аналитической машиной была в основном завершена к 1840 году, Бэббидж начал рассматривать новую разностную машину. Между 1847 и 1849 годами он завершил разработку разностной машины № 2, улучшенной версии оригинала. Этот механизм вычисляет числа длиной в тридцать одну цифру и может табулировать любой многочлен до седьмого порядка. Дизайн был элегантно простой и требовал лишь примерно трети деталей, требуемых в разностном двигателе No.1, обеспечивая при этом аналогичную вычислительную мощность.

Модель

Difference Engine № 2 и аналитическая машина имеют одинаковую конструкцию для принтера — устройства вывода с замечательными характеристиками. Он не только производит печатную копию чернильной распечатки на бумаге в качестве контрольной копии, но также автоматически стереотипирует результаты, то есть впечатляет результаты на мягком материале, например, на гипсе, который можно использовать в качестве формы, из которой может быть изготовлена ​​печатная форма. сделал. Аппарат автоматически набирает результаты и допускает программируемое форматирование i.е. позволяет оператору предварительно настроить расположение результатов на странице. Изменяемые пользователем функции включают переменную высоту строки, переменное количество столбцов, переменные поля столбцов, автоматический перенос строк или перенос столбцов и оставление пустых строк через каждые несколько строк для удобства чтения.

Физическое наследие

За исключением нескольких частично завершенных механических сборок и тестовых моделей малых рабочих секций, ни один из проектов Бэббиджа не был полностью реализован физически при его жизни.Основная сборка, которую он завершил, была одна седьмая разностного двигателя № 1, демонстрационного образца, состоящего из примерно 2000 деталей, собранных в 1832 году. Он работает безупречно по сей день и является первым успешным автоматическим вычислительным устройством, воплощающим математические правила в механизме. Небольшая экспериментальная часть аналитической машины строилась во время смерти Бэббиджа в 1871 году.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *