Пароизоляция это: Зачем нужна пароизоляция, как правильно использовать пароизоляцию

Содержание

Что это и какие виды бывают, инструкция по монтажу, цены за рулон


Пароизоляционная пленка – это барьер для водяного пара, проникающего в конструкцию дома изнутри помещения. Пленка препятствует образованию конденсата на утеплителе и несущих конструкциях, защищает конструкции от появления грибка и продлевает тем самым срок службы дома.

Далее рассмотрим подробно особенности пароизоляционной пленки и сферы ее применения, поможем с выбором и приведем инструкцию по монтажу.

Для чего нужна пароизоляционная пленка

Задача пароизоляционной пленки — не допустить проникновения пара в теплоизоляцию и несущие конструкции дома. При отсутствии пароизоляционных плёнок снижается период эксплуатации жилища и возникает потребность в проведении ремонта.

Воздух в помещении содержит в себе большое количество влаги, поскольку в помещениях люди готовят пищу, принимают душ и т. д. Когда температура на улице ниже, чем в доме, влажный воздух будет стремиться наружу.

Если в конструкциях паробарьер не уложен, влага оседает в утеплителе. Излишняя влажность приводит к снижению свойств теплоизолятора. Также начинаются коррозионные процессы, которые приводят к плачевным результатам: деревянные элементы заражаются грибком, а металлические — разъедаются ржавчиной.

В однородных стенах проблем не возникает: паропроницаемость материала не меняется, поэтому испарения свободно выходят. В каркасных конструкциях характеристики каждого слоя разнятся: пар легко преодолевает препятствие в виде утеплителя, но не может так же быстро пройти сквозь наружную обшивку. В результате скопления влажного воздуха точка росы образуется внутри стены, выпадает конденсат.

Где применяется пароизоляционная пленка

Пароизоляционная пленка защищает утеплитель от намокания, деревянные элементы – от гниения, а металлические – от образования коррозии. Использование пленки необходимо в следующих конструкциях:

Виды пароизоляционных плёнок: свойства и преимущества

Полиэтиленовые плёнки

Полиэтиленовые плёнки — материалы, ключевой особенностью которых является армирование тканью или арматурной сеткой. Это делается для придания прочности. Плёнки бывают двух типов:

  • Перфорированные — они имеют микроотверстия, обеспечивающие паропроницаемость. Однако данный показатель не соответствует норме, поэтому при обустройстве утеплительного пирога обязательно делается вентиляционный зазор;
  • Неперфорированные — материалы, используемые непосредственно для пароизоляции. При их монтаже применяются ленты, предназначенные для соединения отдельных полотен.

Следует акцентировать внимание на том, что существует еще одна разновидность полиэтиленовых плёнок. Имеются в виду материалы, ламинированные алюминиевой фольгой. Главным их преимуществом являются хорошие пароизоляционные свойства. Для комнат с нормальным микроклиматом плёнки не подходят. Но при обустройстве саун, бассейнов они находят широкое применение.

Полипропиленовые плёнки

Полипропиленовые плёнки — материалы, используемые на протяжении многих лет. Сначала их привозили из Финляндии, а потом начали выпускать и в России. Главным плюсом таких плёнок являются прекрасные прочностные характеристики и стойкость к воздействию солнечных лучей. Рассматриваемые материалы имеют еще одно значимое преимущество: наличие антиконденсатного слоя, впитывающего и удерживающего влагу. Такой слой имеет превосходные показатели, потому что даже в критических условиях он вбирает всю влагу, исключая образование капель. А когда причины образования конденсата исчезают, полипропиленовые плёнки высыхают естественным образом.

Пароизоляционные пленки Ондутис

Предназначены для устройства защитных барьеров на внутренних поверхностях стен, перекрытий и кровли. Предотвращают намокание утеплителя, образование плесени и грибка, коррозию металла, гниение деревянных домов.

style=»border: 1px solid black;»>

Вид

Сферы использования

Особенности

Паропроницаемость, г/м2 (24 часа)

Площадь рулона, м2

Температурный диапазон






  • пароизоляция кровли и стен


  • утепленные перекрытия


  • каркасные стены


  • утепленные мансарды

  • совместима со всеми видами утеплителей


  • походит для внутренних работ


  • оснащена клеящей лентой

≤10

75

от -40ºС до + 80ºС

Ондутис B (R70)

  • совместима со всеми видами утеплителей


  • походит для внутренних работ


  • дополнительно требуется клеящая лента

≤10

35,75

от -40ºС до + 80ºС


  • двухслойный паробарьер с алюминиевым напылением


  • подходит для бань и саун


  • дополнительно требуется клеящая лента

≤10

35,75

от -40ºС до + 120ºС

Гидро-пароизоляционные пленки Ондутис

Используются в качестве подкровельного слоя на металлических крышах (под металлочерепицу, профнастил) и гидроизоляции полов во влажных помещениях. Обладают высокой прочностью на разрыв и стойкостью к атмосферным воздействиям.

Читайте также: «Чем отличается пароизоляция от гидроизоляции».

Вид

Сферы использования

Особенности

Паропроницаемость, г/м2 (24 часа)

Площадь рулона, м2

Температурный диапазон




  • кровли с металлическим покрытием


  • плоские крыши


  • полы во влажных помещениях


  • быстровозводимые здания из металлоконструкций

  • выступает в роли паро-, ветро- и влагозащиты


  • может использоваться в качестве временной кровли (до 1,5 месяцев)


  • снижает риск образования наледи


  • в защитный слой добавлен УФ-стабилизатор


  • оснащена клеящей лентой 

≤10

75

от -40ºС до + 80ºС




  • обладает те ми же характеристиками, что и Смарт


  • дополнительно требуется клеящая лента

≤10

35,75

от -40ºС до + 80ºС




  • кровли с металлическим покрытием


  • каркасные стены


  • утепленные мансарды

≤10

35,75

от -40ºС до + 120ºС

Нюансы выбора пароизоляционных пленок

Важную роль в выборе играет: коэффициент паропроницаемости, долговечность и прочность, трудоемкость монтажа и, конечно же, цена материала. В первую очередь нужно ориентироваться на условия: отапливается ли помещение, какой в нем поддерживается температурный режим, каковы показатели влажности воздуха и т.д.

Более подробно читайте в статье «Как выбрать пароизоляционную пленку».

Правила монтажа пароизоляционной пленки

Монтаж пароизоляционных пленок не требует особой квалификации. Главное – укладывать материал нужной стороной к утеплителю и следить за полной герметичностью стыков.

Важные нюансы:

  • Перед началом работы обязательно изучите аннотацию на упаковке.
  • Заранее подготовьте нужные инструменты: ножницы, строительный степлер, рулетку, изолирующую ленту и карандаш.
  • Нарежьте полотнища по размеру и лишь после этого приступайте к монтажу.
  • Укладывайте полосы с нахлестом в 5-15 см, все стыки герметизируйте лентами Ондутис BL или ML.
  • При монтаже внутри помещения пароизоляционная пленка укладывается вплотную к утеплителю.
  • При проведении наружных работ необходимо обустройство вентиляционного зазора.

Более подробную инструкцию вы найдете в статье «Как правильно установить пароизоляционную пленку» и в видео по монтажу.

4 голоса
, пожалуйста, оцените статью:

виды, как работает, устройство пароизоляции

Вода во взвешенном в воздухе состоянии и осевшая на поверхностях в виде конденсата – главный враг строительных конструкций. Она медленно и неуклонно разрушает все известные виды материалов, в краткосрочной перспективе снижает прочностные качества и ощутимо сокращает теплоизоляционные характеристики.

Защиту кровельного пирога от негативного действия влаги выполняет пароизоляционный барьер. Чтобы устроить его в соответствии с технологическими предписаниями, следует знать, для чего нужна пароизоляция и каким образом она сооружается.

Специфика формирования микроклимата в пределах строений, эксплуатируемых в наших широтах, напрямую связана с интенсивным парообразованием. Климат диктует необходимость в поддерживании более высокой температуры внутри помещений в сравнении с улицей. Отопительный сезон у нас по продолжительности преобладает над частью года, не требующей повышения температурных параметров в домах.

Наряду с температурными показателями отмечается и повышение абсолютного уровня влажности. Так происходит, потому что теплый воздух способен удержать в себе больше парообразной воды, чем холодный. Чем ниже температура воздушной массы, тем меньше влаги она может включать.

Согласно обоснованным утверждениям физиков, в кубометре воздуха с t° = +20°С при стопроцентной абсолютной влажности содержится порядка 17,3 г парообразной воды. В тот же момент аналогичная стопроцентная влажность отмечается, если уличный термометр, к примеру, фиксирует t° = -10°С, а относительная влажность составляет лишь 2,3 г.

Дело в том, что плотность холодного воздуха значительно выше, чем тот же показатель, но с более высокой температурой. Ясно, что при охлаждении воздушной массы ей приходится расставаться с избытком пара, который она уже не может вместить. Вот эта вода и выделяется в виде конденсата, оседающего при охлаждении на строительных конструкциях.

С явлением выделения излишков воды из остывающей воздушной массы мы все отлично знакомы. Вспомним о туманах, характерных для раннего утра, наступающего после прохладной ночи в жаркий летний период. Правда природе влажный воздух не наносит столь серьезный урон, который угрожает строительным системам и материалам.

Большинство стройматериалов не могут противостоять воздействию осевшего на поверхностях конденсата:

  • На отсыревшей древесине заводится грибок, приводящий в непригодность детали несущих конструкций.
  • На металлических элементах зарождаются очаги ржавчины, даже если на них были незаметные микроскопические царапины.
  • Сырой утеплитель теряет изоляционные качества, из-за чего в помещениях не удерживается тепло, ощущается холод и неприятный затхлый запах.

Кроме конденсата, который образуется из-за разницы температурных показателей внутри и вне постройки, на строительные системы и материалы воздействует обильный поток бытовых испарений. Они выделяются растениями, животными, хозяевами в процессе дыхания. Пар формируется при приеме гигиенических процедур, приготовлении пищи, стирке, выполнении уборки и т.д.

Выделяемые в ходе жизнедеятельности испарения устремляются туда, где насыщенность ими воздушной массы меньше. Пар постоянно движется в воздушной среде туда, где его мало и показания термометра ниже. Этим объясняется его стремление проникнуть наружу через ограждающие конструкции и вентиляционные системы.

Сам процесс перетекания называется диффундированием. Через строительные системы преимущественно диффундируют испарения, а не сам воздух, которому проще пройти через неплотности в прилегании окон с дверьми к коробкам, вентиляционные устройства, открытые форточки и т.д.

Преобладающая часть испарений просачивается наружу через перекрытия, кровельные конструкции и верхнюю часть стен, потому что теплый воздух вместе с имеющейся с ней влагой всегда движется вверх. Их-то и требуется обустраивать пароизоляцией, как на наиболее подверженные воздействию влаги элементы здания.

Для защиты конструкций от вредного воздействия пара устраивают пароизоляционный барьер. Он призван либо абсолютно герметично перекрыть путь просачивания пара наружу через строительные системы, либо свести к минимальным значениям то, чему удалось этот барьер преодолеть.

Для того чтобы разобраться с устройством указанной защитной системы, нужно знать, каким образом работает пароизоляция и что она собой представляет. По сути, это водоотталкивающий рулонный материал, защищающий строительные системы и теплоизоляцию от попадания в их толщу и оседания на поверхностях влаги.

Место в кровельном пироге

Пароизоляционную пленку устанавливают первой на пути движения испарений. Т.е. сначала пар обязан натолкнуться на указанное препятствие, предотвращающее проникновение преобладающего объема парообразной влаги. В идеале, при стопроцентной изоляции, испарения дальше не пройдут, но идеальных условий для защиты кровельных систем на практике пока нет.

Значит, предполагается, что некоторое количество влаги все же проникнет в толщу утеплителя. Это все, что смогло просочиться сквозь мельчайшие прорехи, микротрещины, участки неплотного соединения полотнищ в сплошной изоляционный ковер, должно выводиться через элементы вентиляционной системы. При грамотном устройстве кровельного пирога воды в любом состоянии в теле системы не остается вообще.

Барьер от воздействия пара устанавливается первым, если ориентироваться на отапливаемое помещение:

  • При обустройстве мансардного помещения пароизоляцию крепят с внутренней стороны стропильной системы, а утеплитель устанавливают по скатам или между стропилинами.
  • При обустройстве дома с чердачной крышей пароизоляцию располагают первой после обшивки потолка. Ее настилают сплошным ковром по балкам деревянного перекрытия или по бетонным плитам.

При проведении ремонтных работ без замены элементов чердачного перекрытия пароизоляционный материал крепится к поверхности чернового потолка. Сейчас выпускают материалы с самоклеящейся основой, с помощью которых без особых проблем можно провести ремонт и существенно увеличить изоляционные свойства конструкций.

Учет способности пропускать пар

При устройстве кровельного пирога в обязательном порядке учитывается такая важная характеристика изоляционных материалов как паропроницаемость. Это способность проводить через себя испарения в объеме, заданном техническими свойствами. Выражается она в мг/м² в сутки, значения варьируют от 0 до 3000.

Это означает, что указанное в технической документации к материалу количество парообразной воды сможет проникнуть через квадратный метр пароизоляционного материала за одни полные сутки.

Для того чтобы в кровельном пироге или в системе утепления чердачного перекрытия не задерживалась влага, материалы располагают в определенном порядке. Он основывается на способности впускать в свою толщу и выводить пар:

  • Первой со стороны помещения устанавливается пленка с наименьшей паропроницаемостью.
  • Второй слой – теплоизоляция, с более высокими, чем у предыдущего слоя паропропускными возможностями.
  • Третий слой – гидроизоляция, отличающаяся самой высокой паропроницаемостью в сравнении с установленными перед ней слоями.

Упрощенно механику процесса можно описать так: испарения прошедшие через пароизоляционную защиту попадают в толщу утеплителя, который с бóльшей легкостью расстается с парообразной водой, чем первый слой. Пар движется дальше, к гидроизоляции, которая еще активней выводит его, чем утеплитель.

Подобным методом пароизоляционный барьер устраивают не только по несущим стенам и ограждающим конструкциям, но и между помещениями с различающимися эксплуатационными условиями. К примеру, над потолком кухни, внутреннего бассейна, санузла, если они расположены под утепленной обустроенной мансардой или жилым этажом.

Отметим, что между гидроизоляцией и кровельным покрытием устраивается вентиляционный зазор, благодаря которому и осуществляется вывод парообразной воды из-под кровли. Если в устройстве водоотталкивающего ковра используется полимерная мембрана, то зазор оставляют только между ней и кровлей, т.к. она свободно пропускает влагу из теплоизоляционного массива наружу.

Если в качестве гидроизоляции применяется полиэтиленовая или полипропиленовая пленка, то подкровельную вентиляцию сооружают в два уровня. Первый устраивают между покрытием и гидроизоляцией, второй между ней и утеплителем. Дело в том, что обычный полиэтилен не пропускает влагу, потому ему запрещено напрямую контактировать с утеплителем.

Однако сейчас выпускают эти виды пленок с перфорацией, сформированной так, что они могут проводить испарения из теплоизоляции, а снаружи воду не пропускают из-за поверхностного натяжения капель воды. Применение подобного варианта облегчает устройство кровельной системы и сокращает итоговую стоимость.

Материалы для пароизоляционного барьера

Кроме сведений о грамотном сооружении утепляющих систем рачительному хозяину нужна еще и информация о видах пароизоляции, подходящих для строительства мансардной крыши и обустройства холодного чердака. Уже выяснили, что для защиты теплоизоляции потребуется материал с наименьшими пропускными в отношении пара способностями.

Это значит, что паропроницаемость пленки должна исчисляться от нескольких сотых долей единицы до десятков. Максимальный допустимый предел  — не более сотни мг/м² за сутки. Чем выше способность пропускать испарения, тем более ответственно необходимо отнестись к сооружению вентиляционной системы: к формированию продухов, установке аэраторов, устройству вентиляционных окон.

Раньше для укладки пароизоляционного слоя использовали пергамин. Его паропроницаемость варьирует от 70 до 95 мг/м² за сутки. Пока в жилищное строительство не были внедрены пластиковые конструкции, материал довольно хорошо справлялся с защитными обязанностями.

После того, как в жилищном строительстве стали активно использоваться полимерные окна, двери, отделка, возникла необходимость в усилении пароизоляционных качество применяемых материалов. Теперь в качестве пароизоляционного барьера используют:

  • Пленки полиэтиленовые и полипропиленовые. Армированные варианты с увеличенной прочностью и устойчивостью к ультрафиолетовому воздействию. Их веский плюс кроется в доступной цене.
  • Фольгированные полимерные мембраны. Пароизоляционные материалы, имеющие с одной стороны фольгированное покрытие. Кроме защиты от пара пароизоляция с фольгой препятствует утечкам тепла, крайне востребована она при обустройстве саун и русских парилок.
  • Антиконденсатные пароизоляционные мембраны. Материалы с гладкой и шершавой сторонами. Шершавую поверхность разворачивают навстречу потоку пара, чтобы исключить образование росы, гладкая препятствует возможному обратному просачиванию конденсата из теплоизоляции.

Антиконденсатные мембраны универсальны. Благодаря особой структуре они могут служить как паро- так и гидроизоляцией. Важно помнить, что при выборе полимерных материалов для обустройства крыши необходимо учесть значения паропроницаемости. У гидроизоляционной оболочки способность проводить пар должна быть выше.

В обустройстве скатов крыш с неэксплуатируемым чердаком антиконденсатная мембрана может быть использована в качестве гидробарьера. В подобных схемах пароизоляционный слой кладут на перекрытие, а различие в параметрах паропроницаемости может быть минимальным или не быть вообще.

Морально устаревший пергамин по нынешний день используется в устройстве пароизоляции под засыпной утеплитель, укладываемый на перекрытие неотапливаемых чердаков. Аналогичную роль достойно сыграют пленки из полиэтилена и полипропилена. Необязательно для этого использовать армированные разновидности, потому что считается, что механических воздействий на указанную прослойку производиться не будет.

Полиэтиленовые пленки, а еще лучше их полипропиленовые виды устанавливаются в качестве пароизоляции мансардных крыш, если выделенный на возведение конструкции бюджет ограничен. Их укладывают с нахлестом, соединяют проклейкой скотчем, к стропилам крепят степлером или рейками.

Нельзя сказать, что полимерные мембранные материалы существенно дороже полиэтилена. Если имеется возможность, лучше не экономить и приобрести именно эти специализированные пароизоляционные марки. Их соединяют с помощью двух- или одностороннего скотча. Обоснованный плюс мембран заключается в повышенной прочности и эксплуатационных сроках, близких по продолжительности к срокам службы кровельных покрытий.

Ролик о парообразовании и необходимости барьера от пара:

Как работает пароизоляционноый слой в пироге утепления:

Специфика укладки пароизоляционных материалов:

Пароизоляция в пирогах систем утепления имеет веское значение. Без нее ощутимо снижаются теплотехнические свойства постройки, сокращаются сроки между проведением текущих и капитальных ремонтов. Важно не просто устроить защиту от пара, но и провести работы согласно технологическим правилам.

важно знать отличия и не перепутать пленки

Если в мансардных помещениях через некоторое время после новоселья «заплакал» потолок или кое-где обнаружились мокрые пятна, то первым делом проверяют, не нарушилась ли целостность кровельного покрытия. А что делать, если при внешнем осмотре никаких дефектов кровли не выявлено? Значит, влага «зависает» на потолке не оттого, что попала снаружи, а потому, что не нашла выход из помещений. Пар, который в большом количестве присутствует в каждом доме, будет стремиться вверх под кровлю. И если кровельный пирог смонтирован неверно, то влага не найдет способ улетучиться, а осядет на потолке и при похолодании выпадет конденсатом. И все потому, что при монтаже были перепутаны пленки, с помощью которых создается пароизоляция и гидроизоляция.

Сегодня на рынке представлено такое количество пленочных покрытий, что неопытный хозяин вполне может перепутать их назначение. Случается, что и кровельщики не обратят на это внимания, и тогда крыша при эксплуатации начнет мокреть. Чтобы этого избежать, необходимо понимать назначение пароизоляции и гидроизоляции и сделать правильный выбор пленочного материала до начала кровельных работ. Если же крыша уже потекла, то единственный выход – дождаться теплых деньков и демонтировать всю внутреннюю часть кровельного пирога, выбросить намокший утеплитель (от него уже нет толку) и выстелить пароизоляционный и гидроизоляционный слои правильными материалами, уложив между ними новый утеплитель. Чтобы правильно выбрать пленочный изоляционный материал, необходимо понимать, в чем отличие пароизоляции от гидроизоляции.

Универсальная гидро- пароизоляционная пленка

Гидроизоляция. Задача гидроизоляционного слоя – не пустить внутрь подкровельного пространства воду и влагу с улицы. Кровельный материал (шифер, металлочерепица и пр.) обеспечивает защиту от прямого попадания осадков, т.е. создает преграду для дождя и снега. Но туман, мгла или пар после летнего дождя легко просачиваются через эти покрытия внутрь. А внутри кровли выстелен теплоизоляционный слой, который должен максимально удерживать теплый воздух, не пропуская его наружу. Если влага проникнет в утеплитель и напитает его, то теплоизоляционные характеристики резко снизятся, ведь зимою все воздушные поры будут «забиты» ледяными кристаллами замороженного пара. Значит, утеплитель надо каким-то образом оградить от поступающей снаружи влаги. И сделать это должен гидроизоляционный пленочный материал.

Пароизоляция. Пароизоляция создается изнутри кровельного пирога. Ее функция – защитить утеплитель от паров из внутренних помещений. Даже если в доме создана отличная вентиляция, пар все равно будет присутствовать, потому что дышат люди, варится еда, включаются утюги, увлажнители, принимаются ванны, поливаются растения и пр. Естественно, теплый пар будет скапливаться у потолка, а через него – пробираться в утеплитель. Поэтому перед теплоизоляционным слоем обязательно ставят паробарьер.

Фольгированный материал стоит дороже остальных пленок, зато, кроме защиты от пара, обеспечивает и сохранность тепла в доме

Пароизоляционные пленки ↑

У таких пленок с обеих сторон абсолютно водонепроницаемая поверхность, т.е. они никакую влагу не впускают и никакую не выпускают. Самый дешевый вариант такой пленки – обычная полиэтиленовая, применяемая на огородах. Правда, для кровли ее можно использовать только в крайнем случае, потому что под крышей всегда жарко, а тонкая пленка от температуры разрушается и растягивается. Самый оптимальный вариант – многослойная пленка с армирующим каркасом из полимеров. Каркас не дает ей растягиваться и провисать, а много слоев обеспечивают долгий срок службы.

Более дорогой, но весьма полезный тип пароизоляционной пленки – фольгированная, т.е. с одной стороны имеющая слой фольги. Такая пленка стелется фольгированной стороной внутрь кровли, чтобы отражать инфракрасное излучение, из-за которого и уходит из помещений основная часть тепла. Использовав подобную пленку для изоляции пара, вы автоматически увеличите уровень сохранения тепла, а значит, станете меньше платить за отопление.

На рулоне с пленкой должно быть указано, что она пароизоляционная

Гидроизоляционные пленки ↑

Для гидроизоляции описанные выше пленки не подойдут, потому что они абсолютно водонепроницаемы. Они, конечно, не пропустят влагу извне, но для нормального функционирования кровельного пирога этого мало. Дело в том, что гидроизоляционный слой выполняет еще одну задачу: выводит из утеплителя случайно попавшие пары. Может возникнуть вопрос: откуда они там берутся, если внутри пленочный барьер и снаружи тоже. Оказывается, еще нет в мире такой пленки, которая была бы водонепроницаемой на 100%. Какая-то часть пара все равно просочится из помещений или вентиляционного слоя, поэтому надо сделать так, чтобы влага нашла выход наружу. Для этого и придуманы особые гидроизоляционные пленки, которые называют мембранами. Они созданы из полимеров и отличаются повышенной прочностью, устойчивостью к перепадам температур, к ультрафиолету. Но самое главное их свойство кроется в структуре: она пористая. Это сделано для того, чтобы пар мог просачиваться через поры под кровлю.

Существуют диффузионные и супердиффузионные мембранные пленки. У обеих поры напоминают микроскопические воронки. Принцип действия основан на том, что молекула воды имеет больший объем, нежели молекула пара. Так что пар через широкую часть воронки выходит, а влага снаружи через узкое «горлышко» просочиться не может. Используя мембраны, важно положить их правильной стороной: широкой частью пор к утеплителю, узкой – к кровельному покрытию.

Структура обеих пленок отличается по количеству пор. Так, диффузионные мембраны требуют, чтобы их поры не соприкасались с утеплителем, иначе воронки закупорятся минеральной ватой и не будут функционировать. В таких кровельных пирогах гидроизоляционный слой должен быть окружен с обеих сторон вентиляционными зазорами: один – между утеплителем и мембраной, второй – между мембраной и кровельным материалом. У супердиффузионной мембраны уровень вывода пара намного выше, поэтому вентиляционный зазор между утеплителем и мембраной не нужен.

Между мембраной и кровельным покрытием обязательно создают вентиляционный зазор, чтобы вышедший пар мог улетучиваться с потоком воздуха наружу

Мембранные пленки подходят не ко всем типам кровельного покрытия, а только к тем, которые не боятся выпадения конденсата на тыльной стороне. Так, к примеру, металлочерепица требует особой гидроизоляционной пленки, которую называют антиконденсатной. Она пар из утеплителя не выпускает наружу, а аккумулирует его на своей тыльной поверхности с помощью множества мельчайших ворсинок. И уже оттуда влага улетучивается с помощью воздушных потоков вентиляционного зазора.

Только грамотное применение пароизоляционных и гидроизоляционных пленок обеспечит сухой потолок и теплый воздух в помещениях.

Для чего нужны пароизоляция стен и пароизоляция кровли?

Пароизоляция любых ограждающих конструкций нужна для предотвращения образования «точки росы» внутри самих конструкций.

Чтобы было понятно предыдущее утверждение, разберем отдельно три вопроса:

1.Что такое «точка росы».

2.Почему влажный воздух проходит из помещения на улицу.

3.Чем опасно образование «точки росы» внутри конструкции.

Итак, по порядку:

1.Точка росы – это температура, при которой влажность воздуха превышает 100% и лишняя влага превращается в росу (конденсирует). Температура выпадения росы для каждого случая разная и зависит она от исходного состояния воздуха. Так, например, для нормальных условий жилых помещений (+20оС, 55%) температура при которой будет выпадение конденсата примерно равна +10оС.

2.Большую часть года внутренний воздух помещения имеет более высокую температуру и влажность (примерно +20оС и 55%) чем уличный воздух. При таких показателях воздух имеет большее давление, поэтому комнату можно представить как воздушный шарик. В нем воздух будет стремиться выйти за пределы шарика. При этом ошибочно думать, что влажный теплый воздух стремится только наверх. Благодаря повышенному давлению он стремится выйти через все ограждающие конструкции — через пол, стены, потолок. Именно поэтому пароизоляция кровли и пароизоляция стен так важна.

3.Наличие «точки росы» в конструкции приводит к увлажнению и как следствие промерзанию, образованию грибка и плесени.

При проектировании конструкции стены необходимо располагать материалы так, чтобы паропроницаемость возрастала в сторону улицы. В таком случае не будет образовываться зон накопления влаги и последующая намокание конструкции. Если же точка росы попадает в ограждающую конструкцию, то для защиты от увлажнения и пароизоляции кровли, пароизоляции стен и прочих ограждающих материалов и конструкций в целом необходимо предусмотреть слой изолирующего материала изнутри помешения.

Лучший материл для пароизоляции кровли, стен и полов – мембраны. В частности, это трехслойная полипропиленовая гидрофобная мембрана компании ТехноНИКОЛЬ.

 

Гидро- и пароизоляция: способы применения


Существуют разные материалы для гидро- и пароизоляции. Способы их применения и укладки тоже разные. Одни подходят для сауны, но не подходят для холодной кровли. Разберёмся, какой стороной нужно укладывать гидро- и пароизоляцию, какие типы плёнок и мембран существуют, и каковы их характеристики.

Паро или гидро?


Пароизоляция и гидроизоляция — две группы разных плёнок. В каждой группе есть свои разновидности, которые сегодня маркируются буквенными обозначениями.

  • Гидроизоляция — это плёнки и мембраны, которые устанавливают снаружи теплоизоляции, то есть вне помещения. Они защищают утеплитель от воздействия влаги извне, то есть от осадков. Они обычно паропроницаемые, поэтому также выводят конденсат из утеплителя.
  • Пароизоляция — это плёнки и мембраны, которые устанавливают с внутренней стороны помещения, как бы до теплоизоляции. Они защищают утеплитель от проникновения водяных паров изнутри дома.

  • Теперь разберёмся, какой стороной укладывают гидро- и пароизоляцию.

    Укладываем гидроизоляцию


    Места применения: утеплённые кровли, конструкции с наружным утеплением, навесные вентилируемые фасады, чердачные перекрытия.


    Как укладывать: посередине между утеплителем и наружной облицовкой, шероховатой стороной к теплоизоляции, гладкой стороной наружу. Нередко на гидроизоляции есть логотип производителя — такую плёнку следует крепить логотипом наружу.


    Характеристики: водоупорность — от 300 до 1000 мм водяного столба, паропроницаемость — от 800 до 2000 г/м2 в сутки, нагрузка на разрыв — от 160 до 190 Н/50 мм.

    Укладываем пароизоляцию


    Мы разобрались, как стелить гидроизоляцию, теперь переходим к пароизоляции.


    Места применения: утеплённые и «холодные» кровли, внутренние и наружные стены, каркасные стены, полы с бетонным основанием, межэтажные, цокольные и чердачные перекрытия.


    Как укладывать: исключительно с внутренней стороны утеплителя. Гладкой стороной к утеплителю, шероховатой — внутрь помещения. Профессиональные строители рекомендуют оставлять вентилируемый зазор между утеплителем и плёнкой.


    Характеристики: нагрузка на разрыв — от 135 до 1070 Н/50 мм, противодействие пару — порядка 7,0 м² час Па/мг (либо паронепроницаемые), водоупорность — не менее 1000 мм водяного столба (либо водонепроницаемые).

      Что делать с остальными плёнками?


      Предположим, вы купили не специализированный материал. Как стелить такую гидро- и пароизоляцию? Профессиональные строители дают общие советы:

    1. Пергамин. Этот материал нужно укладывать с внутренней стороны на утеплитель, чтобы чёрная (битумная) сторона смотрела в помещение.
    2. Полиэтиленовые плёнки в один слой. Их следует монтировать к утеплителю с внутренней стороны помещения. Какой именно стороной — не имеет значения, поскольку у них нет никаких свойств, кроме барьера для пара.
    3. Плёнки с армированной полимерной сеткой. Используется как пароизоляция. Устанавливайте какой угодно стороной — разницы нет.
    4. Двухслойные плёнки. Обычно у них одна поверхность гладкая, а другая шероховатая. Нужно, чтобы гладкая смотрела в сторону к утеплителю, а шероховатая — наружу. Между такой плёнкой и теплоизоляцией нужно делать зазор для вентиляции.
    5. Металлизированные плёнки. Здесь всё просто: металлическая сторона должна смотреть внутрь помещения. Такие плёнки не проводят пар и воду, поэтому их часто используют в саунах и банях.

    Итог


    Помните, что у гидроизоляции и пароизоляции разное назначение. Если пароизоляцию укладывают изнутри дома, ещё до утеплителя, то с гидроизоляцией всё наоборот. Соблюдайте советы, указанные в статье, и в вашем доме всегда будет комфортный микроклимат.

    В статье упоминаются категории:
    В статье упоминаются товары:

    Материалы для пароизоляции кровли, потолка, пола и стен

    Сегодня пароизоляционные материалы набирают все большую популярность. Многие уже ощутили их эффективность на личном опыте, а кто-то находится на стадии выбора подходящих типов и торговых марок. И для тех и для других мы подготовили статью, которая раз и навсегда закроет все имеющиеся вопросы по данной теме. Ну что же, давайте разбираться.

    Зачем нужна пароизоляция

    Вода окружает человека повсюду — она выпадает в виде осадков и используется практически во всех процессах жизнедеятельности.

    Приготовление пищи, проведение гигиенических процедур и стирка одежды — согласно неумолимым законам физики, каждая из этих операций обогащает воздух в жилище водяными парами. Даже если жильцы находятся в состоянии отдыха, выдыхаемый ими воздух все равно насыщен мельчайшими частичками воды. Этот пар скапливается, а так как его давление выше атмосферного, он воздействует на стены, перекрытия жилья и теплоизоляционные материалы, стремясь выйти наружу. 

    Кроме того минераловатные утеплители подвержены выветриванию и воздействию внешней влаги, которая может проникать через отверстия и щели в кровле или наружной обшивке стен.

    Теплоизоляция, насыщенная водяным паром, теряет свои свойства и делает дом беззащитным перед холодом. Современные пароизоляционные материалы способны защитить утеплители от пагубного влияния внутренней избыточной влаги, атмосферных осадков и выветривания.

    Общий смысл применения пароизоляционных материалов на схеме

    Типы материалов и их назначение

    Как правило, пароизоляционные пленки прокладываются двумя слоями (под теплоизоляцией и над теплоизоляцией), чтобы полностью защитить утеплители от влаги. Очень важно обеспечить защиту от влаги, поступающей с обеих сторон, как изнутри, так и снаружи помещения. Пароизоляционные материалы бывают пяти основных типов: А, АМ, В, С, D, причем каждому из них отводится своя роль.

    Тип А — ветро- и влагозащитная паропроницаемая мембрана, защищающая утеплитель от выветривания и внешней влаги. 

    Назначениие: Укладывается между теплоизоляцией и кровельным покрытием или внешней облицовкой стен. Применяется также для вентилируемых фасадов. Материал создан по технологии спанбонд.

    Его основная задача — свободно пропускать пары изнутри утеплителя (если они есть) и препятствовать проникновению капель воды, попадающих из поврежденной кровли или от конденсата. Так как материал не ламинирован, тип А можно применять только в стенах или на кровлях с углом наклона более 35°, чтобы капли скатывались. В противном случае капли воды станут накапливаться лужицами и начнут проникать внутрь строения. Чтобы влага от намокшей мембраны не перешла на кровельный утеплитель, необходимо обеспечивать вентиляционный зазор между утеплителем и пароизоляцией типа А за счет применения двойной обрешетки. 

    Тип АМ — Универсальная многослойная паропроницаемая мембрана. Для защиты несущих элементов кровли и утеплителя от внешних атмосферных осадков и ветра.

    Назначение: Укладывается между теплоизоляцией и кровельным покрытием. В зависимости от производителя пароизоляция типа АМ может быть трехслойная: два слоя спанбонда со специальной диффузной пленкой в центре или двухслойная: слой спанбонда и диффузная пленка. Эта высокотехнологичная пленка является основным отличием материала типа АМ от типа А. Диффузная пленка способна свободно пропускать водяной пар и абсолютно не пропускать воду в жидком виде.

     За счет ламинирования диффузной пленкой материал обладает повышенной водоупорностью и может применяться не только на скатных, но и на плоских кровлях. Он надежно защитит от сильного ветра, обильного ливня или снега. Укладывается стороной с печатью от утеплителя. Важным дополнительным преимуществом является то, что мембрана типа АМ кладется непосредственно на утеплитель без дополнительного вентиляционного зазора. То есть, в отличие от типа А, нет необходимости в применении дополнительной обрешетки.

    Тип В — пароизоляционный материал, используемый в качестве паробарьера внутри помещений. 

    Назначение: защита утеплителя от внутренних паров помещения и сохранение его теплоизоляционных свойств. Применяется в конструкции стен, полов и межэтажных перекрытий. В кровельных работах тип В применяется только для утепленной скатной кровли (в не утепленной кровле или утепленной плоской кровле применяется тип D или С, потому что плотность типа В недостаточна для гидронагрузок, возникающих в плоской или не утепленной кровле).

    Пароизоляция типа В имеет двухслойную структуру: слой спанбонда и слой пароизоляционной пленки. Слой спанбонда необходим для предотвращения образования капели от утреннего конденсата. Влага впитывается в спанбонд утром и выветривается в течение дня.
    Укладка пароизоляции типа В производится гладкой (пленочной) стороной к утеплителю.

    Тип С — двухслойная пароизоляционная мембрана повышенной плотности. Отличается от типа В большей толщиной пароизоляционного пленочного слоя и большей плотностью слоя спанбонда. 

    Назначение: Применяется во всех случаях что и тип В, в виде более прочного аналога. Дополнительно (в отличие от типа В) используется в неутепленных кровлях для защиты деревянных элементов чердачного перекрытия от влаги и в плоских утепленных кровлях для усиленной защиты теплоизоляции.

    Также используется в цокольных этажах и в неотапливаемых подвалах для защиты от грунтовых вод или при устройстве паркетных и ламинированных полов.
    Пароизоляция Типа С укладывается шершавой стороной внутрь помещения.

    Тип D — полипропиленовая ткань, имеющая с одной стороны прочное ламинирующее покрытие. Данный тип материала выдерживает значительные механические нагрузки. 

    Назначение: для укладки между цементной, земляной или другой водопроницаемой стяжкой пола и утеплителем полов, как гидроизолирующая прослойка. Применяется в конструкции не утепленной кровли для защиты от возможных протечек.

    В качестве гидроизоляции может использоваться для перекрытий и стенных конструкций подвальных помещений с высокой влажностью. 
    Дополнительным применением является использование в качестве временной кровли при строительных работах. 

    Клейкие ленты

    Для удобства укладки любых пароизоляционных материалов и защиты стыков от проникновения влаги специалисты в области строительства рекомендуют использовать клейкие ленты. Лентами проклеивают горизонтальные и вертикальные нахлесты, используют для соединения пароизоляционных материалов с примыкающими элементами конструкции, а также для соединения пароизоляционных материалов между собой. Для монтажа пароизоляции рекомендуется использовать клейкие ленты Изоспан нескольких видов: Изоспан KL, Изоспан KL+ и Изоспан ML proff. 

    Изоспан KL – двухсторонняя клейкая лента с основой из спанбонда. В качестве двухстороннего клеящего слоя используется водно-дисперсионный полимер без применения каких-либо растворителей. Срок службы изделия 50 лет.
    Рекомендуется для склеивания внахлест полотен типа А.

     

    Кроме Изоспана KL предлагается его аналог от другого производителя — Изобонд СЛ.

    Изоспан KL+ — это специальная клеящаяся лента, выпущенная на основе нетканого материала с нанесенным двухсторонним усиленным клеевым основанием. Для прочности основа усилена армированием. Изоспан KL+ используется для склейки отдельных холстов пароизоляционных мембран с целью создания надежной пароизоляции поверхности.
    Обладает отличными пароизоляционными свойствами и высокой температурной выносливостью в интервале от — 40 до +100 градусов. Отлично подходит для соединения полиэтиленовых и полипропиленовых пленок, а также разнопористых, неровных и разнородных материалов.
    Рекомендуется для склеивания внахлест полотен любых типов: А, АМ, В, С, D.

    Изоспан ML proff — это клейкая односторонняя лента, выполненная на основе искусственного шелка с применением специальных сетчатых армирующих волокон для усиления основных технических характеристик. Благодаря этому данная лента идеально подходит для склеивания мест примыкания пароизоляции ко всем типам поверхностей, в том числе бетонным, гипсовым и оштукатуренным, а также в местах примыкания труб, оконных проемов, цоколя, либо в местах, где требуется дополнительная пароизоляция. Отлично проявляет все свои свойства в температурном интервале от -40 до +100 градусов. Может применяться как для внутренних, так и для наружных работ.   

    Где приобрести пароизоляционные материалы

    В компании «Агротема А» предоставлены в широком ассортименте современные высококачественные пароизоляционные материалы для различных целей, что позволяет оптимально решить любую задачу. Стоимость материалов вы можете посмотреть в нашем Прайс-листе. Поскольку компания является дилером сразу нескольких производителей, на складе всегда имеется широкий ассортимент материалов разных торговых марок. Для обоснованного выбора необходимо учитывать плотность материала и стоимость за килограмм (именно лучшая цена килограмма в сочетании с высокой плотностью позволяет купить материал с оптимальным соотношением цены и качества).

    Применение пароизоляционных пленок не только поможет защитить жилье от сырости и холода, создать в доме уютную и комфортную атмосферу, но и гарантировано продлит срок жизни всем конструкциям, поможет существенно сэкономить на капитальных ремонтах.

    Остались вопросы?  Свяжитесь с нами по телефону: +7 (495) 744-13-08 

    гидропароизоляция… Какие пленки и куда ставятся в кровле или каркасной стене ⋆ Финский Домик

    На эту статью меня навела тотальная безграмотность как со стороны строителей, так и со стороны покупателей, а так же все чаще мелькающая в коммерческих предложениях фраза по «парогидро изоляцию» или «гидропароизоляцию»  — из за которой потом и начинается вся свистопляска, потерянные деньги, проблемные конструкции и т.п.

    Итак, наверняка вы слышали про гидрозащиту, ветрозащиту и пароизоляцию — то есть про пленки, которые ставятся в утепленные кровли и каркасные стены для их защиты. Но вот дальше, часто начинается полное «парогидробезобразие».

    Я постараюсь писать очень просто и доступно, не погружаюсь в формулы и физику. Главное — понять принципы.

    Паро или гидро?

    Начнем с того, что главная ошибка, это смешивать в одно понятие  пар и влагу.   Пар и влага— это совершенно разные вещи!

    Формально, пар и влага — это вода, но в разных агрегатных состояниях, соответственно обладающая разным набором свойств.

    Вода,  она же влага, она же «гидра» (hydro из др.-греч. ὕδωρ «вода»)  — это то, что мы видим глазами и можем почувствовать.  Вода из под крана, дождь, речка, роса, конденсат.  Другими словами это жидкость. Именно в этом состоянии обычно употребляется термин «вода».

    Пар  — это газообразное состояние воды, вода растворенная в воздухе.

    Когда обычный человек говорит про пар, почему то он думает, что это обязательно что то видимое и осязаемое. Пар из носа чайника, в бане, в ванной и т.п. Но на самом деле это не так.

    Пар присутствует в воздухе всегда и везде. Даже сейчас, когда вы читаете эту статью, пар есть в воздухе вокруг вас.  Он и лежит в основе той самой влажности воздуха, о которой вы наверняка слышали и не раз жаловались, что влажность слишком высокая или слишком низкая. Хотя глазами эту влажность никто не видел.

    В ситуации, когда в воздухе не будет пара — человек долго не проживет.

    Воспользовавшись разными физическими свойствами воды в жидком и газообразном состоянии, наука и промышленность получила возможность создать материалы, которые пропускают пар, но при этом не пропускают воду.

    То есть это некое сито, которое способно пропустить  пар, но не пропустит воду в жидком состоянии.

    При этом, особо умные ученые, а затем производители, придумали, как сделать материал, который будет проводить воду только в одну сторону.  Как именно это сделано, для нас не важно. Таких мембран на рынке немного.

    Так вот, строительная пленка, которая непроницаема для воды, но пропускает пар одинаково в обе стороны — называется гидроизоляционной паропроницаемоей мембраной.  То есть пар она пропускает свободно в обе стороны, а воду (гидру) не пропускает вообще или только в одну сторону.

    Пароизоляция – это материал, которые не пропускает ничего, ни пар, ни воду.  Причем на текущий момент, пароизоляционных мембран — то есть материалов, которые имеют одностороннюю проницаемость для пара, еще не придумали.

    Запомните как «Отче Наш» — никакой универсальной «парогидро мембраны» не существует. Есть пароизоляция  и паропроницаемая гидроизоляция. Это принципиально разные материалы — с разным назначением. Применение этих пленок не там где нужно и не так где нужно — может привести к крайне печальным последствиям для вашего дома!

    Формально, парогидроизоляцией можно назвать именно пароизоляцию, так как она не пропускает ни воду ни пар. Но использование этого термина — путь к совершению опасных ошибок.

    Поэтому еще раз, в каркасном строительстве, а так же в утепленных кровлях, используется два типа пленок

    1. Пароизоляционные — которые не пропускают ни пар, ни воду и не являются мембранами
    2. Гидроизоляционные  паропроницаемые мембраны (так же называемые ветрозащитными, из за крайне низкой воздухопроницаемости или супердиффузионными)

    Эти материалы обладают разными свойствами и использование их не по назначению, практически гарантированно приведет к проблемам с вашим домом.

     Зачем нужны пленки в кровле или каркасной стене?

    Чтобы это понять, нужно добавить немного теории.

    Напомню, что задача этой статьи — объяснить «на пальцах», что происходит, без углубления в физические процессы, парциальное давление, молекулярную физику и т.п.  Так что заранее прошу прощения у тех, у кого по физике было пять 🙂 Кроме того, сразу оговорюсь, что в реальности все описанные ниже процессы гораздо сложнее и имеют массу нюансов.  Но нам главное понять суть.

    Так уж распорядилась природа, что в доме пар всегда идет по направлению от теплого к холодному.  Россия, страна с холодным климатом, средний отопительный период у нас — 210-220 дней из 365 в году.   Если приплюсовать к нему дни и ночи, когда на улице холоднее чем в доме, то и того больше.

    Поэтому, можно сказать, что большую часть времени, вектор движения пара у нас направлен изнутри дома, наружу. Не важно про что идет речь — стены, кровля или нижнее перекрытие.  Назовем все эти вещи одним словом — ограждающие конструкции

    В однородных конструкциях, проблема обычно не возникает.  Потому что паропроницание однородной стены — одинаково.  Пар спокойно себе проходит через стену и выходит в атмосферу.  Но как только у нас появляется многослойная конструкция,  состоящая из материалов с разной паропроницаемостью, все становится уже не так просто.

    Причем, если говорить о стенах, то речь не обязательно о каркасной стене.  Любая многослойная стена, хотя бы кирпич или газобетон с наружным утеплением, уже заставит задуматься.

    Наверняка вы слышали, что в многослойной конструкции, паропроницаемость слоев должна увеличиваться по ходу движения пара.

    Что тогда произойдет?  Пар попадает в конструкцию и двигается в ней из слоя в слой.  При этом, паропроницание каждого последующего слоя, выше и выше.  То есть из каждого последующего слоя, пар выйдет быстрее чем из предыдущего.

    Таким образом у нас не образуется области, где насыщенность пара достигает того значения, когда при определенной температуре может сконденсироваться в реальную влагу  (точка росы).

    В этом случае, никаких проблем у нас не возникнет.   Сложность в том, что добиться такого в реальной ситуации, достаточно не просто.

    Пароизоляция кровли и стен. Где ставится и зачем она нужна?

    Давайте рассмотрим другую ситуацию.   Пар попал в конструкцию, двигается по слоям наружу.  Прошел первый слой, второй… и тут оказалось что третий слой, уже не настолько паропронцаем, как предыдущий.

    В итоге, попавший в стену или кровлю пар не успевает ее покинуть, а сзади его уже подпирает новая «порция».  В результате, перед третьим слоем концентрация пара (точнее насыщеность) начинает расти.

    Помните, что я говорил раньше? Пар двигается по направлению от теплого, к холодному.   Поэтому в районе третьего слоя, когда насыщенность пара достигнет критического значения, то при определенной температуре в этой точке, пар начнет конденсироваться в реальную воду.  То есть мы получили «точку росы» внутри стены.  Например, на границе второго и третьего слоя.

    Именно это, часто наблюдают люди, у которых дом снаружи зашит чем то, имеющим плохое паропроницание, например фанера или ОСП или ЦСП, а пароизоляции внутри нет или она сделана некачественно.   По внутренней стороне наружной обшивки текут реки конденсата, а примыкающая к ней вата вся мокрая.

    Пар легко попадает в стену или крышу и «проскакивает» утеплитель, который как правило имеет превосходное паропроницание. Но затем он «упирается» в наружный материал с плохим проницанием, и в итоге, точка росы образуется внутри стены, прямо перед препятствием на пути пара.

    Из этой ситуации есть два выхода.

    1. Долго и мучительно подбирать материалы «пирога», чтобы точка росы ни при каких условиях не оказалась внутри стены.  Задача возможная, но сложная, учитывая что в реальности, процессы не так просты как я описываю сейчас.
    2. Поставить изнутри пароизоляцию  и сделать ее максимально герметичной.

    Именно по второму пути и идут на западе, делают на пути пара герметичное препятствие.  Ведь если вообще не пускать пар в стену, то он никогда не достигнет той насыщенности, которая приведет к возникновению конденсата. И тогда можно не ломать себе голову над тем, какие материалы использовать в самом «пироге», с точки зрения паропроницаемости слоев.

    Другими словами — установка пароизоляции, это гарантия отсутствия конденсата и сырости внутри стены. При этом пароизоляция всегда ставится с внутренней, «теплой» стороны стены или кровли и делается максимально герметичной.

    Причем самый популярный материал для этого «у них», обычный полиэтилен 200микрон.  Который недорог и имеет самое высокое сопротивление паропроницанию, после алюминиевой фольги.  Фольга была  бы еще лучше, но с нею тяжело работать.

    Кроме того обращаю особое внимание на слово герметичный.   На западе, при монтаже пароизоляции все стыки пленки тщательно проклеиваются. Все отверстия от проводки коммуникаций — труб, проводов через пароизоляцию, так же тщательно герметезируются. Популярная в России установка пароизоляции внахлест, без проклейки стыков, может дать недостаточную герметичность и как следствие, вы получите тот же конденсат.

    Непроклееные стыки и другие потенциальные дыры в пароизоляции, могут являться причиной мокрой стены или кровли, даже если сама по себе пароизоляция есть.

    Хочу так же отметить, что тут важен режим эксплуатации дома.  Летние дачные дома, в которых вы бываете более менее регулярно только с мая по сентябь, и может быть несколько раз в межсезонье, а остальное время дом стоит без отопления, могут простить вам кое какие огрехи пароизоляции.

    А вот дом для ПМЖ, с постоянным отоплением — ошибок не прощает.  Чем больше разница между наружным «минусом» и внутренним «плюсом» в доме — тем больше пара будет поступать в наружные конструкции. И тем больше вероятность получения конденсата внутри этих конструкций.  Причем количество конденсата в итоге может исчисляться десятками литров.

    Зачем нужна гидроизоляционная или супердиффузионная паропроницаемая мембрана?

    Надеюсь вы поняли, зачем делать пароизоляцию с внутренней стены — для того чтобы вообще не пускать пар внутрь конструкций и не допустить условий для его конденсации во влагу.  Но возникает вопрос, а куда и зачем ставить паропроницаемую мембрану и почему нельзя вместо нее так же, поставить пароизоляцию.

    Ветрозащитная, гидроизоляционная мембрана для стен

    В американской конструкции стены, паропроницаемая мембрана всегда ставится снаружи, поверх ОСП.  Ее основная задача как ни странно, это не защита утеплителя, а защита самого ОСП.  Дело в том, что американцы делают виниловый сайдинг и другие фасадные материалы сразу поверх плит, без каких либо вент зазоров или обрешеток.

    Естественно при таком подходе, возникает вероятность попадания наружной атмосферной влаги, между сайдингом и плитой.  Как — это уже второй вопрос, сильный косой дождь, огрехи строительства в районе оконных проемов, примыкания кровель и т.п.

    Если вода попадет между сайдингом и ОСП, то высыхать она там может долго и плита может начать гнить.  А ОСП в этом плане материал поганый. Если начал гнить, то процесс этот развивается очень быстро и уходит вглубь плиты, разрушая ее изнутри.

    Именно для этого, в первую очередь и ставится мембрана  с одностононним проницанием для воды.  Мембрана не даст воде при возможной протечке, пройти к стене. Но если каким то образом, вода попала под пленку, за счет одностороннего проницания, она может выйти наружу.

    Супердиффузионная гидроизоляционная мембрана для кровли

    Пусть вас не смущает слово супердиффузионная.  По сути это то же самое, что и в предыдущем случае. Слово супердиффузионная означает только то, что пленка очень хорошо пропускает пар (диффузия пара)

    В скатной кровле, например под металлочерепицей, обычно нет каких либо плит , поэтому паропроницаемая мембрана защищает утеплитель как от возможных протечек снаружи, так и от продувания ветром. Кстати именно поэтому подобные мембраны еще называют ветрозащитными.  То есть паропроницаемая гидроизоляционная мембрана и ветрозащитная мембрана — как правило, одно  и то же.

    В кровле мембрана так же ставится с наружной стороны, перед вент зазором.

    Кроме того, обращайте внимание на инструкцию к мембране. Так как некоторые мембраны ставят вплотную к утеплителю, а некоторые, с зазором.

    Почему снаружи надо ставить мембрану, а не пароизоляцию

    Но почему не поставить пароизоляцию?  И сделать абсолютно паронепроницаемую стену с обоих сторон?   Теоретически — такое возможно.  Но вот практически, добиться абсолютной герметичности пароизоляции не так просто — все равно где то будут повреждения от крепежа,  огрехи строительства.

    То есть какое то мизерное количество пара, все же будет попадать в стены. Если снаружи стоит паропроницаемая мембрана — то этот мизер имеет шанс на то, чтобы выйти из стены. А вот если пароизоляция, он останется надолго и рано или поздно, достигнет насыщенного состояния и снова точка росы появится внутри стены.

    Итак — ветрозащитная или гидроизоляционная паропроницаемая мембрана, всегда ставится снаружи. То есть с «холодной» стороны стены или кровли.  Если снаружи нет никаких плит или других конструктивных материалов, мембрана ставится поверх утеплителя. В противном случае в стенах, она ставится поверх ограждающих материалов, но под фасадной отделкой.

    Кстати,  стоит упомянуть еще об одной детали, для чего используются пленки, а стена или кровля делается максимально герметичной. Потому что лучший утеплитель, это воздух. Но только в том случае, если он абсолютно неподвижен.  Задача всех утеплителей, будь то пенопласт или минвата, обеспечить неподвижность воздуха внутри себя.  Поэтому чем ниже плотность утеплителя, тем как правило, выше его теплосопротивление — материал содержит в себе больше неподвижного воздуха и меньше материала.

    Использование пленок с обоих сторон стены снижает вероятность продувания утеплителя ветром или конвекционных движений воздуха внутри утеплителя.  Таким образом заставляя утеплитель работать максимально эффективно.

    В чем опасность термина парогидроизоляция?

    Опасность именно в том, что под этим термином, как правило, смешивают два материала, с разным назначением и с разными характеристиками.

    В итоге, начинается путаница.  Пароизоляцию могут поставить с обоих сторон.  Но самый распространенный вариант ошибки, особенно в кровлях и самый страшный по последствиям, когда в результате получается наоборот — пароизоляция установлена снаружи, а паропроницаемая мембрана изнутри.  То есть мы спокойно пропускаем пар в конструкцию, в неограниченных количествах, но не даем ему выйти.  Вот тут то и появляется ситуация, показанная на популярном видео.

    Причем это может произойти как с перекрытием, так и со стеной или с кровлей.

    Вывод:  никогда не смешивайте понятия паропроницаемых гидроизоляционных мембран и пароизоляции — это верная дорога к строительным ошибкам имеющим очень тяжелые последствия.

    Как избежать ошибок с пленками в стене или кровле?

    У страха глаза велики, на самом деле, с пленками в стене или кровле все достаточно просто. Главное помнить соблюдать следующие правила:

    1. В условиях холодного климата (большая часть России) пароизоляция всегда ставится только с внутренней, «теплой», стороны  — будь то крыша или стена
    2. Пароизоляция всегда делается максимально герметично — стыки, отверстия проходок коммуникаций, проклеиваются скотчем. При этом зачастую требуется специальный скотч (как правило с бутил каучуковой клеевой основой), так как простой может отклеиться со временем.
    3. Самая эффективная и дешевая пароизоляция — полиэтиленовая пленка 200мк. Желательно «первичная» — прозрачная, на ней проще всего проклеивать стыки обычным двусторонним скотчем.  Покупка «брендовых» пароизоляций как правило неоправданна.
    4. Паропроницаемые мембраны (супердиффузионные, ветрозащитные) всегда ставятся с наружной, холодной стороны конструкции.
    5. Перед тем как ставить мембрану, обратите внимание на инструкцию к ней, так как некоторые типы мембран рекомендуется ставить с зазором от материала, к которому она прилегает.
    6. Инструкцию можно найти на сайте производителя или на рулоне самой пленки
    7. Обычно, во избежании ошибок с тем «какой стороной» монтировать пленку, производители сворачивают рулон так, чтобы «раскатывая» его снаружи по конструкции, вы автоматически производили монтаж правильной стороной. При других вариантах использования, перед тем как начинать монтаж, подумайте, какой стороной расположить материал.
    8. Выбирая паропроницаемую мембрану, стоит отдать предпочтение качественным производителям «первого и второго эшелона» — Tyvek, Tekton, Delta, Corotop, Juta, Eltete и т.п. Как правило, это европейские и американские бренды.   Мембраны производителей «третьего эшелона» — Изоспан, Наноизол, Мегаизол и прочие «изолы», «брейны» и т.п. как правило сильно уступают в качестве, а  большая часть из них вообще имеет неизвестное китайское происхождение с штамповкой бренда торговой компании на пленке.
    9. В случае сомнений по использованию пленки — зайдите на сайт производителя и прочитайте инструкцию или рекомендацию по применению.  Не доверяйте советам «продавцов консультантов». Относится в основном к материалам «первого и второго эшелона».  В инструкциях  производителей третьего эшелона часто бывает большое количество ошибок, так как фактически они только торгуют пленками, не производя их и не занимаясь каким либо разработками, поэтому инструкции пишутся «на коленке»

    PS Если вас интересует немного больше информации о разнице в паропроницаемых гидроизоляционных мембранах, рекомендую прочитать вот этот небольшой документ

    (Visited 140 580 times, 1 visits today)

    5 1 голос

    Оцените статью

    Понимание пароизоляции | Журнал Architect

    В сфере жилищного строительства достаточно противоречивых строительных технологий, неправильного применения продуктов, устаревших кодексов и сказок старых жен, чтобы сбить с толку любого, кто ищет правильный способ строительства. И пароизоляция занимает одно из первых мест в этом списке. Немногие строители действительно понимают, как они работают и зачем их использовать. Путаницу усугубляет тот факт, что решение о том, следует ли вам устанавливать пароизоляцию, зависит от местоположения дома.К сожалению, это недоразумение может привести к катастрофическим сбоям конвертов и проблемам с плесенью.

    Определение барьеров для воздуха и пара

    Сначала я хочу прояснить распространенную путаницу между «пароизоляцией» и «воздушной преградой». Это недоразумение возникает из-за того, что воздух обычно содержит много влаги в виде пара. Когда насыщенный паром воздух перемещается из одного места в другое, пар перемещается вместе с ним. Хорошо установленный воздушный барьер контролирует как поток воздуха, так и поток влаги.Если вы искали еще одну причину, по которой следует уделять пристальное внимание правильной установке воздушных барьеров, то вот она.

    Контроль движения воздуха должен быть вашим главным приоритетом в игре по энергоэффективности, а также обеспечивает отличный контроль влажности. Обращайте пристальное внимание на каждое место, где будет течь воздух, используя заглушки, прокладки и пену. Для получения дополнительной информации о правильном использовании воздушных барьеров посетите веб-сайты Building Science Corp. по адресу www.buildingscience.com, Building America по адресу www.buildingamerica.gov или Ассоциации воздушных барьеров на сайте www.airbarrier.org.

    При правильном определении пароизоляция сама по себе не контролирует движение воздуха; он контролирует движение влаги. Фактически, пароизоляция не является барьером; это замедлитель диффузии пара (VDR). VDR регулирует поток влаги изнутри или снаружи внутрь на молекулярном уровне. Эта функция контроля влажности происходит везде, где в конструкции используется VDR. Следовательно, в отличие от барьера для проникновения воздуха, VDR не обязательно должен быть сплошным, герметичным или без отверстий; Перфорация в VDR просто обеспечивает большую диффузию пара в этой области по сравнению с другими областями, где диффузия пара менее ограничительна.

    VDR оцениваются по уровню контроля диффузии пара, который они обеспечивают.

    Способность материала задерживать диффузию водяного пара определяется его проницаемостью в единицах, известных как «проницаемость». Это мера количества частиц водяного пара, проходящих через квадратный фут материала в час при известной разнице давления пара. Любой материал с рейтингом проницаемости менее 0,10 считается замедлителем образования пара Класса 1.

    Проблема с пароизоляцией

    Первоначальная причина использования пароизоляции была хорошей: предотвратить намокание стен и потолков.На практике теперь мы понимаем, что когда VDR устанавливаются внутри сборки, они также предотвращают внутреннюю сушку. Это может привести к значительным проблемам с влажностью и появлением плесени; Проблемы возникают, когда стены намокают во время строительства или чаще всего в течение всей жизни дома. Эти циклы увлажнения могут быть вызваны потоком воздуха, утечками из окон, дисбалансом давления и множеством проблем, связанных с образом жизни. Места ниже уровня особенно уязвимы. Растущая сложность стеновых систем также усугубляет проблему.

    Еще есть климатическая переменная.Большая часть заблуждений относительно правильного использования VDR является результатом исследовательских отчетов и анекдотической информации. Почти все эти исследования проводились в холодном климате и были сосредоточены на потоке пара изнутри наружу в зимние месяцы; в нем не учитывались ни движение пара в других климатических условиях, ни то, как поток влаги происходит снаружи внутрь при использовании кондиционирования воздуха во влажные летние месяцы. Когда влага течет из более влажной внешней среды в стенную систему в климате с кондиционированным воздухом, на охлаждаемом внутреннем VDR может образоваться конденсат.Вы можете видеть, что при использовании полиуретана с низкой проницаемостью возможна конденсация на этой поверхности.

    Выбор оболочки может еще больше усложнить поток пара изнутри во внешнюю. Когда некоторые облицовочные материалы, такие как кирпич и традиционная штукатурка, намокают, они могут удерживать значительное количество воды и требуют более длительного времени сушки. В жаркую и влажную погоду влага втягивается внутрь, поскольку солнце нагревает эти поверхности, увеличивая давление пара на сборку. Это также может добавить нежелательной влаги. Лучшая стратегия для этого — вентиляция облицовки кладки и замена поли VDR продуктом с более высокой химической проницаемостью, например краской, которая позволит системе стен работать в течение сезона.

    Воздушный барьер против пароизоляции: в чем разница

    Воздушные барьеры предназначены для предотвращения попадания потока воздуха и связанной с ним влаги в ограждающую конструкцию здания. Пароизоляция предназначена только для предотвращения переноса влаги за счет диффузии пара в ограждающую конструкцию дома. Примечательно, что количество влаги, переносимой воздушным потоком, , в 50-100 раз больше, чем количество влаги, переносимой диффузией пара, что делает потребность в высококачественном воздушном барьере, таком как Barricade ® Building Wrap , более важна, чем пароизоляция.

    Кроме того, непроницаемые пароизоляции могут вызвать образование плесени и гниения, в то время как проницаемые воздушные барьеры, такие как Barricade ® Building Wrap, обеспечивают испарение влаги внутри стеновой системы дома.

    Воздушные барьеры 101

    Что такое воздушный барьер?

    Международный кодекс энергосбережения 2018 (IECC ® ) определяет воздушный барьер как один или несколько материалов, соединенных непрерывно, чтобы ограничить или предотвратить прохождение воздуха через тепловую оболочку здания и ее сборки.Материал воздушного барьера также должен иметь воздухопроницаемость не более 0,02 л / (с · м²) при перепаде давления 75 Па (0,004 куб. Фут / фут2 при перепаде давления 1,56 фунта / фут2) при испытании в соответствии с ASTM. E 2178. Воздухопроницаемость — это количество воздуха, проникающего через продукт, в то время как утечка воздуха — это воздух, который проходит через зазоры и отверстия.

    Для чего нужен воздушный барьер?

    Назначение эффективного воздушного барьера — регулировать микроклимат в помещении, останавливая перенос воздуха и связанной с ним влаги между интерьером и экстерьером дома.Воздушный барьер также должен противостоять действующим на него перепадам давления воздуха. Прекращение переноса влаги внутрь стенового блока имеет решающее значение, потому что, когда теплый пар касается холодных внутренних стен, пар превращается в жидкость за счет конденсации. По сути, воздушные барьеры сводят к минимуму или ограничивают потери и приток тепла за счет теплопроводности, конвекции и излучения.

    • Теплопроводность — это действие более горячих молекул, движущихся по направлению к более холодным молекулам. Эффективное значение R системы стен здания — это ее сопротивление теплопроводности.
    • Тепловая конвекция — это поток тепловой энергии из более теплого помещения в более прохладное за счет потока жидкостей (обычно жидкостей и газов).
    • Тепловое излучение переносит тепло из теплых мест в прохладные помещения с помощью электромагнитных волн, которые в основном представляют собой солнечное излучение.

    Основные требования к качественной и эффективной воздушной преграде

    1. Долговечность в течение ожидаемого срока службы дома
    2. Непрерывно по всему ограждению здания
    3. Непроницаемый для воздушного потока
    4. Прочность и жесткость, позволяющие противостоять силам, которые могут действовать на них во время и после строительства

    Кодекс требований к воздушным барьерам

    Жилые дома

    IRC 2018 ( Таблица R402.4.1.1 ) говорится, что в ограждающей конструкции здания должен быть установлен непрерывный воздушный барьер, внешняя тепловая оболочка содержит непрерывный барьер, а разрывы стыков в воздушном барьере должны быть герметизированы.

    Коммерческие здания

    IBC 2018, раздел C402.5.1 , критерии воздушного барьера для коммерческих зданий (требуются для всех климатических зон, кроме 2B), требуют непрерывного воздушного барьера по всей тепловой оболочке здания. Кроме того, разрешается размещать воздушные заслонки внутри или снаружи оболочки здания, внутри узлов, составляющих оболочку, или в любой их комбинации.Кроме того, воздушный барьер должен соответствовать разделам C402.5.1.1 и C492.5.1.2 .

    Пароизоляция 101

    Пароизоляция предотвращает диффузию пара через строительные материалы. В строительной науке диффузией пара управляет второй закон термодинамики. Проще говоря, влага течет из области с более высокой концентрацией в область с более низкой концентрацией влаги или из более теплого в более прохладное пространство внутри строительного материала, такого как гипс и изоляция.

    Пароизоляция против пароизоляции

    Важно не путать пароизоляцию с ингибиторами парообразования. Пароизоляция останавливает диффузию пара, а замедлитель пара лишь замедляет диффузию пара. Важно отметить, что метод осушения по стандарту ASTM E 96 используется для определения способности материала ограничивать количество влаги, проходящей через него, что определяет его класс замедлителя паров (барьера).

    • Класс I — пароизоляция: 0,1 доп.
    • Класс II — замедлитель образования паров: 0,1 <доп. <1,0 доп.
    • Класс III — замедлитель образования пара: 1,0 <допуск <10 допусков

    Исторически пароизоляция (обычно полиэтилен) размещалась на внутренней изоляции стен и потолка, чтобы предотвратить разделение пара на стеновые системы в зимние месяцы, когда внутри дома теплее, чем воздух внутри стеновой системы.

    Нужны ли пароизоляции стеновой системе?

    Распространение пара — второстепенный фактор проникновения влаги в стенную систему

    В исследовании 2018 года * из Дании изучалось влияние проливного дождя и диффузии пара на движение влаги и тепла через гигроскопичную и проницаемую оболочку здания.Гигроскопичная оболочка здания может поглощать и накапливать влагу из окружающего воздуха. Проницаемая оболочка здания обеспечивает диффузию пара.

    Исследование пришло к выводу, что наличие пароизоляции не привело к значительным изменениям влажности стенового блока. Кроме того, из четырех механизмов переноса влаги в стеновую систему, потока жидкости, капиллярного всасывания, движения воздуха и диффузии пара, диффузия пара представляет собой наименьшую величину и поэтому с меньшей вероятностью нанесет серьезный ущерб дому.

    Проблемы с пароизоляцией

    Пароизоляция не только не помогает системе стен оставаться сухой, но и может повредить целостность дома. Если влага проникает в стеновую систему, низкая проницаемость пароизоляции может препятствовать высыханию стеновой системы. Недостаточная сушка внутри ограждения здания может привести к появлению плесени и гнили, которые вредны для здоровья обитателей дома и могут повредить целостность дома.

    Кодекс

    Требования к пароизоляции

    Использование пароизоляции внутри или снаружи здания зависит от климатической зоны .Международный строительный кодекс 2018 г. (IBC) 1404.3 и Международный жилищный кодекс 2018 г. (IRC) R702.7 предписывают использование пароизоляции и замедлителей схватывания I или II класса на внутренней стороне каркасной стены в климатических зонах 5, 6,7,8 и морской 4. Южные климатические зоны 1, 2 и 3 не требуют пароизоляции и замедлителей схватывания.

    Устранение необходимости в пароизоляции с помощью защитной пленки

    Barricade Building Wrap — это непрерывный воздушный барьер, покрывающий всю ограждающую конструкцию дома.Баррикадная пленка также непроницаема для воздушного потока, долговечна в течение ожидаемого срока службы дома и обладает жесткостью и прочностью, чтобы противостоять силам, которые действуют на нее во время и после строительства.

    1. Barricade Wrap — это система непрерывного воздушного барьера, которая контролирует перенос воздуха, тепла и влаги, а также воздуха, что обеспечивает здоровый, комфортный, энергоэффективный, комфортный и прочный дом. Важно отметить, что Barricade Wrap соответствует и превосходит требования к воздушному барьеру IECC R402 2018 года.4.1 и C402.5.1 .
    2. Barricade Wrap с рейтингом проницаемости 11 США в соответствии с тестом ASTM E96, проницаема для влаги. Стандарт требует домашнего обертывания с пятью химическими завивками или выше.
    3. Barricade ® Обертка долговечна благодаря устойчивости к холоду, УФ-лучам и влаге.
      • Термостойкость Barricade: AC38 Раздел 3.3.4: (Испытание на изгиб на холодном оправке) гарантирует, что продукт не будет трескаться при низких температурах.
      • Barricade Wrap может выдерживать без повреждений четыре месяца ультрафиолетового излучения.
      • Barricade Wrap проходит все эти испытания на водонепроницаемость: ASTM D779 (испытание на лодке), CCMC 07102 (испытание в водоеме) и метод испытаний 127 AATCC.
    4. Barricade Wrap обладает прочностью, чтобы сохранять свою целостность, благодаря отрывной конструкции с превосходной прочностью. Обертка Barricade Wrap прошла оба теста, которые измеряют прочность продукта или сопротивление разрыву: ASTM D5034 и ASTM D882.

    Barricade Wrap — эффективный воздушный барьер, который является непрерывным, проницаемым, прочным и прочным.В отличие от непроницаемых пароизоляционных материалов, Barricade Wrap может противостоять влаге, позволяя влаге выходить из полостей наружных стен, что особенно важно в жарком и влажном климате. Посетите Barricade ® для получения дополнительной информации о воздушных барьерах и пароизоляции.

    * Бастьен, Дайан и Винтер-Гаасвиг, Мартин. (2018). Влияние проливного дождя и диффузии пара на гигротермические характеристики гигроскопической и проницаемой оболочки здания.Энергия. 164. 10.1016 / j.energy.2018.07.195.

    Пароизоляция — InterNACHI®

    Применение и характеристики

    Пароизоляция — важная часть контроля влажности в помещениях. Пароизоляция — это материал, обычно пластик или лист фольги, который сопротивляется диффузии влаги через потолочные, настенные и напольные конструкции здания. Замедлители диффузии пара также эффективны для контроля влажности в подвалах, подпольях и фундаментных плитах.

    Обычно используется термин «пароизоляция», но «замедлитель диффузии пара», вероятно, более точен, поскольку «барьер» означает, что материал будет препятствовать передаче влаги, но на самом деле это не так. Любой материал пропускает хотя бы небольшую часть водяного пара.

    Способность данного материала противостоять диффузии водяного пара измеряется с помощью единиц, называемых «химическая проницаемость», которые определяют его проницаемость. Пермь при 73,4 ° F (23 ° C) — это мера количества зерен водяного пара, проходящих через квадратный фут материала в час при перепаде давления пара, равном 1 дюйму ртутного столба (1 дюйм водяного столба или WC. ).Любой материал с рейтингом проницаемости менее 1 считается замедлителем образования пара.

    Региональные приложения

    В зависимости от климата, замедлители диффузии пара используются и устанавливаются по-разному. Количество «градусо-дней нагрева» (или жестких дисков) для данной области используется для определения ее соответствующего применения. «Суточный градус нагрева» — это единица измерения, которая измеряет, как часто дневная температура наружного воздуха по сухому термометру опускается ниже предполагаемой базовой, обычно 18 ° C (65 ° F).

    Плюсы и минусы различных материалов

    Пароизоляционная краска — латексная грунтовка для внутренних работ.Он ведет себя и наносится так же, как и стандартный латексный праймер, и имеет рейтинг химической проницаемости около 0,7. Пароизоляционную краску можно тонировать, наносить на новый гипсокартон и окрашенные поверхности. Стоимость галлона сопоставима со стандартной краской.

    • Плюсы: Пароизоляционная функция практически не требует дополнительных затрат в ситуациях, когда можно использовать только грунтовку для внутренних работ. Пароизоляционная краска — простейшее применение в том случае, когда нежелательно существенно изменять существующую стеновую плиту или поверхность штукатурки.
    • Минусы: Краска подходит только для внутренних поверхностей стен. Повреждение краски может повлиять на ее замедляющую способность, как и недостаточная подготовительная работа перед нанесением. Если все отверстия и пересечения материалов на внутренней поверхности стены не будут полностью заделаны или заделаны каким-либо другим способом, краска не будет полностью эффективной.

    Обработанная бумага или фольга , используемые в качестве замедлителя парообразования, обычно имеют форму крафт-пленки или изоляционного войлока с фольгой.Это полезно в ситуациях, когда сняли отделку стен и устанавливают новую изоляцию наружных стен, а также в новостройках. Этот тип наиболее эффективен в смешанном климате с низкой влажностью, поскольку открытая кромка открывает путь для миграции влаги и пара.

    • Плюсы: Это очень экономичный вариант, поскольку утеплитель и пароизоляция могут быть установлены за один прием.
    • Минусы: Его можно установить только при новом строительстве или в ситуации, когда стены были разобраны до чернового каркаса.Количество стыков и кромок, присущее этой установке, не позволяет создать чрезвычайно эффективный замедлитель образования пара, хотя его достаточно для смешанного климата или жаркого климата, где влажность регулируется.

    Прозрачный полиэтилен — это самая простая из имеющихся пластиковых барьерных пленок, а также самая экономичная и лучше всего подходит для внутренних стен, а не для обрамления и изоляции. Это также безвредный для окружающей среды выбор, поскольку он на 80% состоит из повторно обработанного материала, но за это приходится платить, так как качество может быть неравномерным, что делает его склонным к разрывам и проколам.Этот тип пароизоляционного материала не рекомендуется для применений, где он будет подвергаться большему, чем ограниченное количество прямых солнечных лучей, поскольку со временем он разрушится.

    • Плюсы: Стоит недорого и довольно проста в установке. Поскольку материал полупрозрачный, его легко прикрепить к элементам каркаса, а также просто установить стеновую панель поверх пластика. Прозрачный полиэтилен наиболее эффективен в суровых климатических условиях.
    • Минусы: Этот материал довольно хрупкий и легко повреждается при установке.Он обладает ограниченной устойчивостью к проколам и разрывам. Любые отверстия, например, в распределительной коробке, необходимо заклеить лентой и загерметизировать, чтобы создать эффективный барьер.

    Черный полиэтилен решает проблему деградации под воздействием солнечного света за счет добавления углерода в качестве ингибитора ультрафиолета. В остальном он функционально идентичен прозрачному полиэтилену.

    • Плюсы: Может использоваться для облицовки наружных стен в жарком и влажном охлаждающем климате, где он может подвергаться воздействию солнечных лучей.
    • Минусы: У него есть проблемы, подобные прозрачному полиэтилену, такие как непрочность, в дополнение к потере простоты установки, обеспечиваемой прозрачным пластиком, который позволяет просматривать элементы каркаса во время прикрепления материала.

    Поперечно-ламинированный и армированный волокнами полиэтилен — это специальные продукты для применений, где может потребоваться более высокая прочность. При модернизации неровных поверхностей, таких как обшивка из массивного картона, эти изделия менее подвержены разрывам и проколам из-за поднятых головок гвоздей, осколков и открытых острых углов.Любой продукт также будет уместен там, где ожидается грубое обращение и неблагоприятные условия на площадке.

    • Плюсы: Эти материалы выдерживают более грубое обращение, чем стандартные пластиковые листы, поскольку они менее подвержены проколам и разрывам. Армированные и ламинированные изделия обычно рассчитаны на ограниченное воздействие ультрафиолета при наружном использовании. Черный армированный и ламинированный поли может использоваться в качестве необходимого погодного барьера под наружным сайдингом и облицовкой.
    • Минусы: Эти материалы, опять же, похожи на другие формы пластиковой пленки, но с дополнительным недостатком в виде более высокой начальной стоимости.

    Замедлители диффузии пара широко используются во многих географических регионах. Инспекторам будет полезно знать, как их наиболее эффективно использовать в различных областях и в разных условиях. Знание преимуществ и недостатков, присущих различным материалам, может помочь определить, какой из них подойдет для конкретного применения, будь то новая сборка или модернизация.

    Воздух / пароизоляция должна умереть

    ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
    Juste Fanou
    Термины «воздушные барьеры» и «пароизоляторы» (или «пароизоляция»), возможно, являются одними из наиболее плохо понимаемых концепций в строительной отрасли.Большинство специалистов в области строительства знают, что они необходимы, но часто не могут правильно разместить их в стеновых конструкциях. Также последствия неправильной установки этих материалов могут обернуться сбоями. Такое непонимание функций этих узлов привело к упрощению практических правил, подверженных неправильному применению (, например, , пароизоляция всегда находится внутри, а воздушный барьер всегда снаружи). По мере того, как производители вводят материалы с новыми свойствами и пытаются раздвинуть границы конструкции ограждающих конструкций зданий, крайне важно, чтобы отрасль согласовала терминологию для обозначения конкретных функций и назначения этих материалов, чтобы избежать путаницы и дорогостоящих ошибок.В этом отношении термин «воздух / пароизоляция» вводит в заблуждение, и его следует заменить более подходящей терминологией.

    Краткая история

    Фото © BigStockPhoto.com

    Первые попытки повысить тепловой комфорт пассажиров в современной североамериканской конструкции с деревянным каркасом относятся к 1800-м годам. Внедрение «строительной бумаги» в виде пропитанного асфальтом войлока, также известного как оболочечные мембраны или атмосферостойкие барьеры (WRB), представляло собой раннюю попытку уменьшить смачивание стеновых конструкций и утечку воздуха (см. Книгу Building от 2017 г. Материалы: выбросы продуктов и опасность горения для здоровья , автор К.Гесс-Коса). Промышленность добилась дальнейших успехов в области характеристик оболочки в 1930-х годах с появлением теплоизоляции в полостях каркаса и на чердаках (для получения дополнительной информации прочтите статью «Контроль тепла, воздуха и влажности в стенах канадских домов: обзор Историческая основа современной практики », М. Кониорчик и Д. Гавин, опубликованные в апрельском выпуске журнала Journal of Building Physics за 2008 г.) . Однако вскоре проявились нежелательные эффекты влаги в изолированных полостях.Традиционно окрашенные деревянные фасады начали страдать от отслаивания, образования пузырей и других повреждений покрытия. Как является нормой в строительной отрасли, быстро последовала «игра виноватых»: производители изоляционных материалов обвиняли производителей красок и наоборот, в то время как производители строительной бумаги оказались в середине (см. Статью «Возникновение диффузионной парадигмы»). в США », автор — У. Б. Роуз, опубликованный в 2003 г. в книге Research in Building Physics: Proceedings of the Second International Conference on Building Physics , под редакцией Дж.В. Ж. Кармелье, Х. Хенс и Г. Вермейр). Только в конце 1930-х годов ученые начали исследовать движение влаги в строительных конструкциях. Их выводы, которые некоторые считают спорными или даже предвзятыми, пришли к выводу, что перенос водяного пара путем диффузии (процесс, описанный далее в этой статье) был ответственным за отслаивание краски от сайдинга (многие возражают против теории диффузии пара Фрэнка Роули, которая привела к введение пароизоляции в полостях стен и вентилируемых чердачных помещениях не было обосновано здравой наукой.Многие специалисты в этой области считают это исследование необъективным, поскольку оно финансировалось изоляционной промышленностью как способ защиты от претензий, что изоляция была ответственна за конденсацию в полостях и отслаивание краски). Эти выводы привели к принятию нормативных актов, которые обязывали использовать мембраны с низкой паропроницаемостью в строительных проектах в начале 1950-х годов. Это было рождение «пароизоляции», и промышленность отметила его решение проблемы влажности, облицовав стены полиэтиленом (PE).Якобы проблема отслоения краски решилась, по крайней мере так казалось.

    Рисунок 1: Классификация материалов по паропроницаемости; ссылка на статью «Строительная наука» Дж. Лстибурека.
    Изображение предоставлено J. Lstiburek

    Тем не менее, проблемы с влажностью сохранялись. Дальнейшие исследования в середине 1980-х годов показали, что неконтролируемая инфильтрация воздуха, а не диффузия пара, была самой большой причиной накопления влаги в полостях.Однако к тому времени популярность ныне повсеместных методов «6-mil poly» вдохновила на герметизацию уже знакомого пароизоляционного слоя. Цель заключалась в том, чтобы превратить его в эффективную воздушную преграду.

    Эти попытки герметизировать пароизоляцию можно охарактеризовать как возникновение «воздушно-пароизоляции», как понятия, так и термина. Концептуально «воздух / пароизоляция» представляла собой материал, предназначенный для решения проблем как инфильтрации воздуха, так и диффузии пара. Его сторонники верили в герметизацию стыков полиэтиленовых листов для создания материала двойного назначения, приписывая дополнительные свойства контроля инфильтрации воздуха уже популярному полиэтилену толщиной 6 мил.«Эта популярность, возможно, и стала причиной его большой привлекательности и широкого распространения в отрасли. Однако со временем идея «герметизации полиэтиленом» была быстро оставлена, и специалисты-строители исследовали другие материалы для обеспечения герметичности. Было ясно, что полиэтилен не является достаточно прочным материалом, чтобы противостоять воздействию порывов ветра и давления. Более того, отсутствие долговечности усугублялось внутренними трудностями, связанными с установкой полиэтилена в непрерывном режиме.

    Даже если концепция полиэтиленового барьера «воздух / пар» постепенно исчезла, термин продолжал использоваться.По совпадению, время шло, казалось, что общее понимание функций этих элементов управления воздухом и влажностью было еще больше омрачено этим смешанным термином. Эти когда-то отличные друг от друга материалы постепенно превращались в абстрактные пунктирные линии, которые, как все знали, требовались для деталей конструкции, но никто до конца не понимал, где и почему.

    Отремонтируйте или замените пароизоляцию, чтобы влага из почвы не попадала в ваше пространство для ползания — Triangle Crawl Space Solutions

    Пароизоляция защищает ваш дом от влаги

    Самая распространенная вещь, присутствующая во всех вентилируемых ползунках в Северной Каролине, — это влага.Это вызвано как жарким, так и влажным летом, а также обильными дождями весной и осенью. Большинство домов в районе Треугольника были построены с подпольем под домом и вентилируемыми. В зависимости от возраста вашего дома пароизоляция может быть такой же простой, как лист пластика, уложенного на землю, или вообще не иметь пароизоляции.

    Влага из земли и из вентиляционных отверстий в сочетании создает всевозможные проблемы под вашим домом. Эта влажность может привести к образованию плесени, грибка, сухой гнили и способствует размножению насекомых и других вредителей.Пароизоляция — ключевой шаг к снижению этой влажности. Если под вашим домом слишком много влаги, вы можете увидеть признаки высолов на фундаментных стенах или даже стоячую воду в подлете. Выцветание — это белые или меловые пятна, которые видны, когда влага проникает в фундамент из шлакоблока. Это может быть вызвано проблемой внешнего дренажа, избытком стоячей воды или другим источником влаги. Избыток воды может потребовать дополнительных мер, таких как осушитель или отстойник, или устранение проблемы с дренажем, но пароизоляция должна рассматриваться как первый шаг в решении.

    Правильно установленный пароизоляционный слой предотвращает попадание влаги из земли на балки пола, изоляцию, черный пол и другие материалы, расположенные в подвесном пространстве. Когда во время дождя земля становится насыщенной, влага движется по земле, как губка, контактируя с почвой под вашим домом. Даже при правильно заделанной фундаментной стене и хорошем дренаже влага будет мигрировать через почву под фундаментом, создавая условия, идеально подходящие для роста плесени, затхлого запаха, насекомых и других проблем.

    Установите новую пароизоляцию или замените старую пароизоляцию.

    Если ваша пароизоляция старая, порванная, отсутствует в некоторых местах или повреждена, возможно, пришло время установить новую. Кроме того, если ваш дом был построен без пароизоляции, установка его — отличный первый шаг к контролю влажности.

    Правильно установленный пароизоляционный барьер в подвесном пространстве должен быть перекрыт и заклеен лентой, чтобы устранить щели в покрытии. Пластик обрезан до краев стен, а также вокруг опор и опор под вашим домом.Triangle Crawl Space Solutions перекрывает наш пластик толщиной 12 мил на 12 дюймов и заклеивает каждый шов лентой. Кромки вдоль стен и вокруг опор не крепятся.

    Текущие строительные нормы и правила определяют минимальную толщину в 6 мил, но более толстая пластиковая облицовка толщиной 12 мил работает лучше и с меньшей вероятностью будет повреждена при техническом обслуживании или доступе в пространство для лазания. Triangle Crawl Space Solutions рекомендует использовать пластиковый вкладыш толщиной 12 мил для большинства домов, если вы не планируете продавать свой дом в ближайшем будущем и хотите соответствовать только минимальным требованиям кодов.

    Герметичный пароизоляционный барьер

    Если у вас есть проблемы с чрезмерной влажностью, на которые указывает стоячая вода, высолы, рост плесени или лужи под вашим домом, Triangle Crawl Space Solutions порекомендует герметичный пароизоляционный слой для решения этих проблем. Герметичный пароизоляционный слой обеспечивает дополнительную защиту от влаги, проникающей в ваше рабочее пространство. Герметичный пароизоляционный слой использует тот же прочный пластиковый вкладыш толщиной 12 мил, что и стандартный пароизоляционный слой, но этот пластиковый вкладыш прикреплен к фундаментным стенам, а отдельные опоры дома обертываются.Он поднимается вверх по опорам и фундаментной стене, чтобы не допустить попадания влаги в подполье. Между верхней частью пароизоляции и подоконником дома оставляется зазор, чтобы можно было проводить любые проверки в будущем (обычно для проверки на вредителей, как того требует Строительный кодекс штата Северная Каролина).

    Дополнительные способы управления влажностью

    После того, как ваш новый пароизоляционный барьер будет правильно установлен, TCSS может обсудить любые дальнейшие потребности по удалению влаги, такие как отстойный насос или осушитель, в зависимости от вашего конкретного уровня влажности и состояния вашего подвесного пространства.Все начинается с бесплатной оценки вашего пространства для сканирования… просто позвоните нам.

    Центр CE — Понимание критических элементов воздухо- и пароизоляции

    Введение в настенные системы

    Стеновые системы

    буквально повсюду вокруг нас, и они более сложные и динамичные, чем вы думаете. Несмотря на их вездесущий и кажущийся приземленным характер, углубленный анализ науки о стеновых системах и ограждающих конструкциях зданий может легко заполнить целые книги, не говоря уже об этом курсе.В этом модуле вы узнаете основы конструкции стеновых систем в том, что касается воздухо- и гидроизоляции, различия между воздушными и пароизоляционными барьерами, а также то, как определить подходящую стеновую систему для использования в данной среде, чтобы обеспечить максимальный комфорт и безопасность. жильцы здания.

    Все изображения любезно предоставлены SOPREMA

    Обзор принципов воздухо- и пароизоляции для проектировщиков и монтажников стеновых систем.

    Первое, что нужно понять о стеновых системах, — это то, что не существует «волшебного» решения для идеальной гидроизоляции стеновых систем, подходящего для любых условий.Элементы, которые влияют на общие характеристики ограждения здания, включают, например, используемые стеновые компоненты, местоположение проекта, тип и местоположение изоляции, а также тип занятости. При таком уровне изменчивости не существует одной «идеальной конструкции», которую можно было бы использовать в каждой ситуации. Тем не менее, есть несколько общих правил, которые помогут вам выбрать правильную систему для вашего конкретного приложения.

    Хотя вы, возможно, знакомы с некоторыми примерами стен, которые будут обсуждаться в этом курсе, вероятно, будут и некоторые незнакомые примеры.Чтобы максимально использовать ваше время, содержание курса будет сосредоточено в основном на общих концепциях и темах строительства стен, а не на конкретных компонентах стен, чтобы помочь вам понять принципы выбора и проектирования воздухо- и пароизоляции. Темы будут включать:

    • Важная терминология
    • Наука о стеновых системах
      • Экономия энергии
      • Последствия утечки воздуха
      • Прочность
      • Типы конструкций
    • Варианты настенной системы

    Понимание терминологии стеновых систем

    Хотя мы часто смотрим на стены вокруг нас как на твердые преграды между нами и внешним миром, когда дело доходит до проникновения воздуха и воды, они могут быть гораздо менее непроницаемыми, чем кажется.Ошибки при установке во время строительства, неправильный выбор материала стеновой системы, структурные повреждения и другие факторы могут способствовать попаданию воздуха или влаги в стены или сквозь них, и результаты могут быть уродливыми, дорогостоящими или прямо катастрофическими.

    Утечка воздуха — это то, чего мы никогда не хотим видеть в настенных системах. Проблемы с утечкой воздуха обычно возникают в местах проникновения в стены, оконные или дверные проемы, переходы от фундамента к стене и переходы от стены к крыше, то есть в любой точке перехода или стыковке, где важны детализация и совместимость материалов.Утечка воздуха может не только отрицательно повлиять на энергоэффективность здания и комфорт пассажиров, способствуя потерям тепла и холода; это также усугубляет проблемы, связанные с проникновением воды.

    Пропускание водяного пара имеет тенденцию происходить даже в правильно смонтированных стенах. Одним из способов проникновения влаги в стены является процесс, называемый диффузией пара, при котором молекулы воды перемещаются через пористые материалы из областей с высокой концентрацией в области с низкой концентрацией посредством беспорядочного молекулярного движения.Пока влагопроницаемость контролируется, влажные материалы в стеновой конструкции высыхают естественным образом за счет диффузии пара. Однако, если накопление влаги не уменьшится, чувствительные к влаге компоненты стен могут разрушиться или представлять опасность для здоровья.

    Разница в скорости пропускания воды, вызванная использованием барьерного материала для диффузии пара, по меньшей мере, существенна.

    Движение воздуха может значительно ускорить скорость диффузии пара со стеной, вызывая проблемы в стеновой сборке и потенциально сокращая срок службы конструкции.Фактически, утечка воздуха переносит в 100 раз больше воды через небольшую пустоту в стеновой системе, чем если бы пар рассеивался через лист барьерного материала размером 4 на 8 футов. Наряду с объемными утечками воды конденсация в результате утечки воздуха является основной причиной проблем с влажностью внутри зданий.

    Из-за пагубного воздействия утечки воздуха и чрезмерного проникновения влаги стеновые системы обычно снабжены пароизоляционными или «барьерными» материалами для защиты здания во время строительства, а затем предотвращения утечек воздуха и контроля уровней диффузии пара, когда здание будет готово к эксплуатации. .Предотвращение проблем с влажностью является наиболее важным шагом для обеспечения долговременной работы стеновых конструкций, но часто бывает трудно устранить все источники влаги в течение срока службы здания. Однако при правильной установке барьерных материалов во всех стеновых системах накопление влаги может быть ограничено до уровня, при котором она высохнет естественным путем.

    Воздушные барьеры предназначены для управления движением воздуха, но могут пропускать пары влаги.

    Воздушный барьер — это материал, который помещается на внешнюю опорную стену конструкции и предназначен для управления движением воздуха внутри конструкции.Воздушный барьер обозначен пунктирной линией на визуальном изображении стены. Воздушный барьер не пропускает воздух, но позволяет пару перемещаться внутри стеновой конструкции, что делает ее проницаемой мембраной. Воздушные барьеры классифицируются в соответствии с их паропроницаемостью, и степень прохождения водяного пара через стену зависит от каждого типа воздушного барьера. Мембранам с воздушным барьером присваиваются рейтинги проницаемости от 0 до более 75 перм. Проницаемости США, и промышленность признает материалы с паропроницаемостью 10 U.S. perms или выше как «проницаемые».

    Проницаемые мембраны помогают ускорить высыхание стен, уменьшая проблемы, связанные с влажностью, такие как образование плесени, гниение древесины и коррозия. Как правило, более проницаемая мембрана обеспечивает большую сушку, чем менее проницаемая, но она также позволяет большему количеству водяного пара проникать в стеновую конструкцию снаружи. Высокопроницаемая мембрана может помочь при сушке, но она будет менее эффективной, если диффузия пара ограничивается другими слоями в сборке.

    На скорость высыхания стеновой системы влияет проницаемость мембраны, но значительное увеличение проницаемости не означает значительного увеличения скорости высыхания.

    В отрасли существует общее представление о том, что чем выше рейтинг проницаемости воздушного барьера, тем больше он облегчает сушку стеновых компонентов, но это не всегда так. На приведенном выше графике показано, что замена мембраны с допуском 10 США (красная линия) на мембрану с допуском 50 США (синяя линия) улучшает нормализованную скорость сушки всего на 8 процентов, что незначительно.Повышение рейтинга химической стойкости с 50 до 100 США сокращает время высыхания только на 1 процент.

    Другими словами, мембрана, которая в пять раз более проницаема, не позволит стене высохнуть в пять раз быстрее. Мембрана позволяет стене быстрее накапливать влагу, когда давление пара применяется снаружи внутрь, но, как правило, увеличение проницаемости снижает отдачу от скорости высыхания, и в некоторых случаях просто не стоит вкладывать средства в поиск мембран. с более высокой проницаемостью.

    Кроме того, динамика высыхания любой конструкции стены будет зависеть от материала, который имеет наименьшую проницаемость для водяного пара. Таким образом, потенциальные преимущества высокопроницаемого воздушного барьера часто уменьшаются за счет использования другого материала, который определяет сушильную способность сборки. Важно учитывать тип стены, в которой будет устанавливаться мембрана, поскольку такие факторы, как наличие изоляции внутри полости стены, наличие изоляции за пределами ограждающей конструкции здания и емкость накопления воды обшивки, могут усложнить высыхание влажной стены.

    Непроницаемые пароизоляционные барьеры контролируют движение влаги, рассеивая пар, предотвращая его перемещение через систему стен.

    Воздухо- и пароизоляция, в просторечии называемая «пароизоляцией», представляет собой материал, который помещается на внешнюю опорную стену конструкции и предназначен для управления движением воздуха и пара внутри конструкции. Пароизоляция проиллюстрирована сплошной оранжевой линией в визуальном элементе стены на этом изображении. Поскольку пароизоляция регулирует пропускание как воздуха, так и влаги, она считается непроницаемой мембраной, «непроницаемой мембраной» или «замедлителем образования пара».«Промышленность признает материалы с паропроницаемостью менее 1 перм. США в качестве непроницаемой мембраны.

    Если вы посмотрите на проницаемые и непроницаемые листовые материалы, вы заметите, что непроницаемая облицовка гладкая. Большинство непроницаемых облицовочных материалов изготавливаются из разновидности полиэтиленовой (пластиковой) пленки. В качестве альтернативы облицовочные материалы на проницаемых листах могут состоять из текстурированной синтетической ткани или специальных пленок из термопластичного полимера, которые позволяют пару проходить через мембрану.

    10 Правил устройства пароизоляции

    Неправильное использование пароизоляции является сегодня одной из основных причин проблем, связанных с влажностью в зданиях.

    Пароизоляция или пароизоляция предназначены для предотвращения намокания стеновых конструкций. Но когда эти системы не спроектированы и не установлены должным образом, они могут фактически предотвратить высыхание узлов, что может привести к нежелательному проникновению влаги.

    «Диффузия может быть проблемой, особенно при неправильном использовании замедлителей парообразования — например, когда виниловое покрытие стен используется на юго-востоке», — говорит Ричард Келехер, AIA, CSI, LEED, старший архитектор Richard Keleher Architect, Конкорд, Массачусетс.

    Келехер говорит, что функция пароизоляции заключается в замедлении миграции водяного пара. Определение проницаемости пароизоляции и ее правильного расположения в сборке зависит от климата, внутренних условий и характеристик материалов, из которых состоит сборка.

    «Конденсация происходит, когда водяной пар в воздухе встречается с поверхностью, которая находится ниже точки росы», — говорит Келехер. «Это обычно происходит на тепловых мостах в неизолированных или плохо изолированных узлах, а также при необычно высокой внутренней влажности.”

    Чтобы помочь профессионалам AEC правильно установить пароизоляцию, Келехер и его коллега, эксперт по ограждающим конструкциям зданий Джадд Петерсон, AIA, президент Judd / Allen Group, Эдина, Миннесота, предлагают следующие советы:

    1 Основы создания надлежащей пароизоляции включают разработку теплового сечения внешней стены или крыши; определение точки росы для внутренней среды, определение точки росы в конструкции стены; проверка расположения пароизоляции и тепловых характеристик изоляции относительно точки росы.Для получения значений относительной температуры, влажности и точки росы обратитесь к психометрической таблице.

    2 Пароизоляция бывает нескольких разновидностей. Они включают:

    Замедлитель парообразования класса I — 0,1 доп.

    Замедлитель образования паров класса II — 1,0 или менее, но более 0,1 мм.

    Замедлитель образования паров класса III — 10 или меньше, но больше 1,0.


    (Согласно Канадскому совету по общим стандартам)

    Паронепроницаемость — 0.1 химическая завивка или меньше

    Пар полупроницаемый — 1,0 непермитр. И более 0,1perm.

    Пар полупроницаемый-10 без проницаемости и выше 1,0perm

    Паропроницаемость — более 10 перм.


    (согласно ASHRAE)

    3 В климате с очень низкими температурами убедитесь, что на теплой стороне изоляции имеется настоящий непроницаемый пароизоляционный материал с допуском 0,10 или меньше. Однако важно отметить, что большая часть неконтролируемой влаги в наружных стенах передается воздушным потоком, а не паропроницаемостью.

    4 Проверьте целостность пароизоляции на внутренней плоскости изоляции по всей оболочке здания, ища проникновения, углы и соединения. Постоянно герметизируйте все нахлёстки и проникновения.

    5 Обеспечьте пароизоляционные листы под плитой с использованием полиолефиновых мембран, а не полиэтилена, и непрерывно герметизируйте все нахлёстки и проникновения. Поместите пароизоляцию непосредственно под бетонные плиты на грунте и накройте плиты влажной мешковиной, чтобы снизить риск скручивания во время высыхания и отверждения.

    6 Избегайте использования пароизоляции там, где замедлители образования пара могут обеспечить удовлетворительную работу. Рассмотрите возможность снижения производительности, если это позволяют физика окружающей среды; это способствует проницаемости для испарения и высыхания.

    7 В общем, избегайте двойных пароизоляционных материалов там, где это возможно, и там, где пароизоляционные ограждения не могут быть усовершенствованы, поскольку вредная влага может накапливаться между дефектными пароизоляционными материалами. Однако обратите внимание, что двойные пароизоляционные материалы являются обычным явлением там, где они могут быть усовершенствованы, например, в конструкции навесных стен, остекления и кровли.

    8 Рассмотрите возможность использования мембран SVR (интеллектуальных замедлителей паров), которые представляют собой листы из полиамида, проницаемость которых варьируется в зависимости от влажности окружающей среды в прилегающих помещениях. Также не забудьте отметить ограничения на использование SVR, которые существуют из-за относительно высоких требований к влажности.

    8 Рассмотрите возможность использования изоляционного материала из распыляемой пены для обеспечения пароизоляции в неудобных или труднодоступных местах. Для пароизоляции, которая также обеспечивает защиту от огня / дыма, рассмотрите возможность использования дополнительных покрытий из спрея.

    9 Остерегайтесь непреднамеренного создания пароизоляционного покрытия в месте или на плоскости, где он не находится — например, виниловое покрытие стен на внешней поверхности гипсокартона.

    Информация об авторе
    Ричард Келехер, AIA, CSI, LEED, старший архитектор Richard Keleher Architect, Конкорд, Массачусетс. С ним можно связаться по телефону 978-369-4550 или [email protected]
    Джадд Петерсон, AIA, президент компании Judd / Allen Group, Эдина, Миннесота.С ним можно связаться по телефону 952-224-5050 или [email protected]

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *